
Optimization for Deep Learning

Tutorial for OSU TDAI Deep Learning Summer School

Jia (Kevin) Liu

Assistant Professor
Department of Electrical and Computer Engineering

The Ohio State University, Columbus, OH, USA

June 1, 2022

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 1 / 150

Tutorial Outline

Introduction

Convexity

First-Order Methods

Zeroth-Order Methods

First-Order Optimization for ML Problems with Special Geometric Structures

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 2 / 150

Part I

Introduction

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 3 / 150

Mathematical Optimization

Mathematical optimization problem:

Minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

x = [x1, . . . , xN]> ∈ RN : decision variables

f0 : RN → R: objective function

fi : RN → R, i = 1, . . . ,m: constraint fucntions

Solution or optimal point x∗ has the smallest value of f0 among all vectors that
satisfy the constraints

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 4 / 150

Brief History of Optimization

Theory:

Early foundations laid by many all-time great mathematicians
(e.g., Newton, Gauss, Lagrange, Euler, Fermat, ...)

Convex analysis 1900–1970 (Duality by von Neumann, KKT conditions...)

Algorithms

1947: simplex algorithm for linear programming (Dantzig)

1970s: ellipsoid method [Khachiyan 1979], 1st polynomial-time alg. for LP

1980s & 90s: polynomial-time interior-point methods for convex optimization
[Karmarkar 1984, Nesterov & Nemirovski 1994]

since 2000s: many methods for large-scale convex optimization

Applications

before 1990: mostly in operations research, a few in engineering

since 1990: many applications in engineering (control, signal processing,
networking and communications, circuit design,...)

since 2000s: machine learning

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 5 / 150

Solving Optimization Problems

General optimization problems

I Very difficult to solve (NP-hard in general)

I Often involve trade-offs: long computation time, may not find an optimal
solution (approximation may be acceptable in practice)

Exceptions: Problems with special structures

I Linear programming problems

I Convex optimization problems

I Some non-convex optimization problems with strong-duality

Watershed between Problem Hardness: Convexity

I This course focuses on nonconvex problems arising from ML context

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 6 / 150

Applying Optimization Tools in Machine Learning

Linear Regression

Variable Selection & Compressed Sensing

Support Vector Machine

Logistic Regression (+ Regularization)

Matrix Completion

Deep Neural Network Training

Reinforcement Learning

Distributed/Federated/Decentralized
Learning

...

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 7 / 150

Example 1: Linear Regression (Convex)

Minimizeβ ‖y −Xβ‖22

Given data samples: {(xi, yi), i = 1, . . . ,m}, where xi ∈ Rn, ∀i
Find a linear estimator: y = β>x, so that “error” is small in some sense

Let X , [x1, . . . ,xm]> ∈ Rm×n, y , [y1, . . . , ym]> ∈ Rm

Linear algebra for ‖ · ‖2: β∗ = (X>X)−1X>y (analytical solution)

Computation time proportional to n2m (less if structured)

Stochastic gradient if m,n are large

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 8 / 150

Example 2: Support Vector Machine (Convex)

Given data samples: {(xi, yi), i = 1, . . . ,m}
I xi ∈ Rn called “feature vectors”, ∀i
I yi ∈ {−1,+1} are “labels”

Linear classifier: f(x) = sgn(w>x + b):
I w ∈ Rn: weight vector for features
I b ∈ R: Some “bias”

Goal: To find a pair (w, b) to minimize a weighted sum such that
I Minimize classification error on training samples
I Robust to random noise in the training samples

Minimize
w,b,ε

1

2
‖w‖2 + C

m∑
i=1

εi

subject to yi(w
>xi + b) ≥ 1− εi, εi ≥ 0, i = 1, . . . ,m

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 9 / 150

Nonconvex Optimization Problems in ML
Lower complexity bound for solving general nonconvex problems

I Consider, w.l.o.g., minx∈[0,1]d f(x)
I f is nonconvex and L-Lipschitz-continuous, with global optimal f∗ > −∞
I To find an ε-approximate solution x̂ (i.e., f(x̂)− f∗ ≤ ε), number of iterations

required: Ω(Ldε−d) (exponential)

Several ways to relax this challenging goal:

I Finding hidden convexity or reformulate into an equivalent convex problem
F Need to exploit special problem structure as much as possible
F However, solution approaches cannot be generalized

I Change the goal to finding a stationary point or a local extremum
F Often possible to obtain FO methods with polynomial dependence of the

complexity on the dimension of the problem and desired accuracy

I Identify a class of problems:
F General enough to characterize a wide range of applications (in ML)
F Allow one to obtain global performance guarantees of an algorithm
F E.g., Polyak-Lojasiewicz condition (linear convergence),
α-weakly-quasi-convexity (sublinear convergence), etc.

I But what if gradients are hard to obtain?
F E.g., reinforcement learning, blackbox adversarial attacks on DNN?
F Zeroth-order or derivative-free methods

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 10 / 150

Nonconvex Optimization Problems in ML
Lower complexity bound for solving general nonconvex problems

I Consider, w.l.o.g., minx∈[0,1]d f(x)
I f is nonconvex and L-Lipschitz-continuous, with global optimal f∗ > −∞
I To find an ε-approximate solution x̂ (i.e., f(x̂)− f∗ ≤ ε), number of iterations

required: Ω(Ldε−d) (exponential)

Several ways to relax this challenging goal:

I Finding hidden convexity or reformulate into an equivalent convex problem
F Need to exploit special problem structure as much as possible
F However, solution approaches cannot be generalized

I Change the goal to finding a stationary point or a local extremum
F Often possible to obtain FO methods with polynomial dependence of the

complexity on the dimension of the problem and desired accuracy

I Identify a class of problems:
F General enough to characterize a wide range of applications (in ML)
F Allow one to obtain global performance guarantees of an algorithm
F E.g., Polyak-Lojasiewicz condition (linear convergence),
α-weakly-quasi-convexity (sublinear convergence), etc.

I But what if gradients are hard to obtain?
F E.g., reinforcement learning, blackbox adversarial attacks on DNN?
F Zeroth-order or derivative-free methods

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 10 / 150

Nonconvex Optimization Problems in ML
Lower complexity bound for solving general nonconvex problems

I Consider, w.l.o.g., minx∈[0,1]d f(x)
I f is nonconvex and L-Lipschitz-continuous, with global optimal f∗ > −∞
I To find an ε-approximate solution x̂ (i.e., f(x̂)− f∗ ≤ ε), number of iterations

required: Ω(Ldε−d) (exponential)

Several ways to relax this challenging goal:

I Finding hidden convexity or reformulate into an equivalent convex problem
F Need to exploit special problem structure as much as possible
F However, solution approaches cannot be generalized

I Change the goal to finding a stationary point or a local extremum
F Often possible to obtain FO methods with polynomial dependence of the

complexity on the dimension of the problem and desired accuracy

I Identify a class of problems:
F General enough to characterize a wide range of applications (in ML)
F Allow one to obtain global performance guarantees of an algorithm
F E.g., Polyak-Lojasiewicz condition (linear convergence),
α-weakly-quasi-convexity (sublinear convergence), etc.

I But what if gradients are hard to obtain?
F E.g., reinforcement learning, blackbox adversarial attacks on DNN?
F Zeroth-order or derivative-free methods

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 10 / 150

Tractable Nonconvex Optimization Problems in ML

Problems with hidden convexity or analytic solutions
I Eigen-problems (e.g., PCA, multi-dimensional scaling, ...)
I Non-convex proximal operators (e.g., Hard-thresholding, Potts minimization)
I Some discrete problems (binary graph segmentation, discrete Potts

minimization, nearly optimal K-means)
I Infinite-dimensional problems (smoothing splines, locally adaptive regression

splines, reproducing kernel Hilbert spaces)
I Non-negative matrix factorization (NMF)
I Compressive sensing with `1 regularization

Problems with (global) convergence results
I Phase retrieval problem
I Low-rank matrix completion
I Deep learning

Problems with certain properties of symmetry
I Rotational symmetry, discrete symmetry, etc.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 11 / 150

Example 3: Deep Learning (Nonconvex)

Example: Train an L-layer fully-connected NN for supervised learning:

min
W

{
F (W) ,

1

m

m∑
i=1

`(yi, f(xi,W))

}
,

I W = {W1, . . . ,WL}, with Wi ∈ Rni×ni−1 , are weights of NN model
I {(xi,yi)mi=1}, xi ∈ Rn0 , are training samples
I `(·, ·) is a loss function (e.g., quadratic or logistic loss)
I NN model can be written as:

f(xi,W) = WLσ(WL−1σ(. . . , σ(W2σ(W1xi)) . . .)),

where σ(·) is scalar-valued and called activation function.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 12 / 150

Example 6: Deep Learning (Nonconvex)

Landscape of deep neural networks
I Loss surfaces of ResNet-56 with/without skip connections [Li et al. ’18]

Training NN is NP-complete in general [Blum and Rivest, ’89], but:
I All local minima are global for 1-layer NN: [Soltanolkotabi et al. ’18],

[Haeffele and Vidal, ’17], [Feizi et al. ’17]
I GD/SGD converge to global min for linear networks [Arora et al. ’18], [Ji and

Telgarsky, ’19], [Shin, ’19], wide over-parameterized networks [Allen-Zhu et
al., ’19], and pyramid networks [Nguyen and Mondelli, ’19]

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 13 / 150

Part II

Convexity

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 14 / 150

Why Do We Care About Convexity?

For convex optimization problem, local minima are global minima

Formally: Let D be the feasible domain defined by the constraints. If x ∈ D
satisfies the following local condition: ∃ d > 0 such that for all y ∈ D satisfying
‖x− y‖2 ≤ d, we have f0(x) ≤ f0(y). ⇒ f0(x) ≤ f0(y) for all y ∈ D.

A crucial fact that would significantly reduce
the complexity in optimization!

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 15 / 150

Convex Sets

Convex set: A set D ∈ Rn such that

∀x,y ∈ D ⇒ µx + (1− µ)y ∈ D, ∀0 ≤ µ ≤ 1

Geometrically, line segment joining any two points in D lies in entirely in D

Convex combination: A linear combination µ1x1 + · · ·+ µkxk for
x1, . . . ,xk ∈ Rn, with µi ≥ 0, i = 1, . . . , k and

∑k
i=1 µi = 1.

Convex hull: A set defined by all convex combinations of elements in a set D.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 16 / 150

Examples of Convex Sets

1) Norm balls: Radius r ball in lp norm Bp = {x ∈ Rn : ‖x‖p ≤ r}

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 17 / 150

Examples of Convex Sets

2) Hyperplane and haflspaces

Hyperplane: Set of the form {x|a>x = b} with a 6= 0

Halfspace: Set of the form {x|a>x ≤ b} with a 6= 0

a is called “normal vector”

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 18 / 150

Examples of Convex Sets

3) Polyhedron: {x : Ax ≤ b}, whre A ∈ Rm×n, ≤ is component-wise inequality

Note:

{x : Ax ≤ b,Cx = d} is also a polyhedron (Why?)

Polyhedron is an intersection of finite number of halfspaces and hyperplanes

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 19 / 150

Operations That Preserve Convexity of Sets

Intersection: The intersection of convex sets is convex

Scaling and Translation: If C is convex, then aC + b , {ax + b : x ∈ C} is
also convex for any a and b.

Affine image and preimage: If f(x) = Ax + b and C is convex, then

f(C) , {f(x) : x ∈ C}

is also convex. If D is convex, then

f−1(D) , {x : f(x) ∈ D}

is also convex

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 20 / 150

Convex Functions

Convex function: f(·) : Rn → R is convex if dom(f) ∈ Rn is convex and

f
(
µx + (1− µ)y

)
≤ µf(x) + (1− µ)f(y)

for all µ ∈ [0, 1] and for all x,y ∈ dom(f).

In words, f lies below the line segment that joins any f(x) and f(y).

Concave function: f concave ⇐⇒ −f convex

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 21 / 150

Other Important Characterizations of Convex Functions

First-order characterization: If f is differentiable, then f is convex if and only
if dom(f) is convex, and

f(y) ≥ f(x) +∇f>(x)(y − x)

for all x,y ∈ dom(f).

Implying an important consequence: ∇f(x) = 0 =⇒ x minimizes f

Second-order characterization: If f is twice differentiable, then f is convex if
and only if dom(f) is convex, and H(x) = ∇2f(x) � 0 for all x ∈ dom(f)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 22 / 150

Important Convexity Notions

Strictly convex: f
(
µx + (1− µ)y

)
< µf(x) + (1− µ)f(y), i.e., f is convex

and has greater curvature than a linear function

Strongly convex with parameter m: f(x)− m
2 ‖x‖2 is convex, i.e., f is at

least as curvy as a m-parameterized quadratic function

Note: strongly convex ⇒ strictly convex ⇒ convex, (converse is not true)

Similar notions for concave functions

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 23 / 150

Important Examples of Convex/Concave Functions

Univariate functions:
I Exponential functions: eax is convex for all a ∈ R
I Power functions: xa is convex if a ∈ (−∞, 0]∪ [1,∞) and concave if a ∈ [0, 1]
I Logarithmic functions: log(x) is concave for x > 0

Affine function: a>x + b is both concave and convex

Quadratic function: 1
2x
>Qx + b>x + c is convex if Q � 0 (positive

semidefinite)

Least square loss function: ‖y −Ax‖22 is always convex (since A>A � 0)

Norm: ‖x‖ is always convex for any norm, e.g.,

I lp norm: ‖x‖p = (
∑n
i=1 x

p
i)

1
p for p ≥ 1, ‖x‖∞ = maxi=1,...,n{|xi|}

I Matrix operator (spectral) norm ‖X‖op = σ1(X)
Matrix trace (nuclear) norm ‖X‖tr =

∑r
i=1 σr(X), where

σ1(X) ≥ · · · ≥ σr(X) ≥ 0 are the singular values of X

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 24 / 150

Operations That Preserve Convexity of Functions

Nonnegative linear combinations: f1, . . . , fm being convex implies
µ1f1 + · · ·+ µmfm is convex for any µ1, . . . , µm ≥ 0

Pointwise maximization: If fi is convex for any index i ∈ I, then

f(x) = max
i∈I

fi(x)

is convex. Note that the index set I can be infinite

Partial minimization: If g(x,y) is convex in x,y and C is convex, then

f(x) = min
y∈C

g(x,y)

is convex (the basis for ADMM, coordinate descent, ...)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 25 / 150

More Operations That Preserve Convexity of Functions

Affine composition: f is convex =⇒ g(x) = f(Ax + b) is convex

General composition: Suppose f = h ◦ g, where g : Rn → R, h : R→ R,
f : Rn → R. Then:

I f is convex if h is convex & nondecreasing, g is convex
I f is convex if h is convex & nonincreasing, g is concave
I f is concave if h is concave & nondecreasing, g is concave
I f is concave if h is concave & nonincreasing, g is convex

How to remember these? Think of the chain rule when n = 1

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 26 / 150

Part III

First-Order Methods

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 27 / 150

Outline for First-Order Methods

Convergence Rate Concept

The Gradient Descent Method

The Stochastic Gradient Descent Method

Variance-Reduced Stochastic First-Order Methods

Adaptive First-Order Methods

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 28 / 150

Iterative Algorithms for Optimization

We consider the following iterative algorithms:

xk+1 = xk + skdk,

where sk is step-size, and dk is search direction depending on (xk,xk−1, . . .).

For now: assume f smooth, f(xk) and ∇f(xk) is easy to evaluate

Complications from ML:

Nonconvex f

Nonsmooth f

f not available (or too expensive to evaluate exactly)

Only an estimate of ∇f(xk) is available

A constraint x ∈ Ω (usually a relatively simple Ω, e.g., ball, box, simplex...)

Nonsmooth regularization, i.e., instead of f(x), we want min f(x) + τψ(x)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 29 / 150

How to Evaluate the Speed of an Iterative Algorithm?

Definition 1 (Convergence rate)

A sequence {rk} → r∗ and rk 6= r∗ for all k. The rate (or order) of convergence p
is a nonnegative number satisfying

lim sup
k→∞

‖rk+1 − r∗‖
‖rk − r∗‖p

= β <∞.

Sublinear: p = 1 and β = 1 (e.g., O(1/k) rate, kind of slow but still OK)

Linear or geometric: p = 1 and 0 < β < 1 (i.e., ‖rk+1 − r∗‖ ≤ β‖rk − r∗‖
for some β ∈ (0, 1), or ‖rk − r∗‖ = O(βk), which is quite fast)

Superlinear: p > 1 and β <∞, or p = 1 and β = 0 (i.e., ‖rk+1−r∗‖
‖rk−r∗‖ → 0,

that’s very fast!)

Quadratic: p = 2 and β <∞ (‖rk+1 − r∗‖ ≤ β‖rk − r∗‖2, # of correct
significant digits doubles per iteration. Rarely need anything faster than this!)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 30 / 150

Convergence Rates Comparisons

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 31 / 150

Convergence Rates Comparisons: Log-Scale

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 32 / 150

Outline for First-Order Methods

Convergence Rate Concept

The Gradient Descent Method

The Stochastic Gradient Descent Method

Variance-Reduced Stochastic First-Order Methods

Adaptive First-Order Methods

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 33 / 150

Gradient Descent

Back to the unconstrained optimization problem, with f smooth and convex:

min
x∈Rn

f(x)

Denote the optimal value as f∗ = minx f(x∗) and an optimal solution as x∗

Gradient Descent
Choose initial point x0 ∈ Rn. Repeat:

xk = xk−1 − sk∇f(xk−1), k = 1, 2, 3, . . .

Stop if some stopping criterion is satisfied.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 34 / 150

Gradient Descent: Geometric Interpretation

Gradient descent is a first-order method: Consider the following quadratic Taylor
approximation:

f(y) ≈ f(x) +∇f(x)>(y − x) +
1

2
(y − x)>∇2f(x)(y − x)

No, we replace Hessian ∇2f(x) by 1
sI to obtain:

f(y) ≈ f(x) +∇f(x)>(y − x) +
1

2s
‖y − x‖2

Can be viewed as a linear approximation to f , with proximity term to x weighted
by 1

2s . Choose next point y = x+ to minimize this approximation:

x+ = x− s∇f(x)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 35 / 150

Gradient Descent: Geometric Interpretation

x+ = arg miny f(x) +∇f(x)>(y − x) + 1
2s‖y − x‖22

Questions:

How to choose step sizes {sk}?
What is the according convergence rate? Or does it depend on {sk}?

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 36 / 150

Strategy 1: Fixed Step Size

Simply set sk = s for all k = 1, 2, 3,

Limitations: May diverge if s is too large, Can be slow if s is too small.

Example: Consider f(x) = (10x2
1 + x2

2)/2:

8 iterations 100 iterations

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 37 / 150

Strategy 1: Fixed Step Size

Converges nicely when s is “just right.” Same example, GD after 40 iterations:

Will be clear what we mean by “just right” in convergence rate analysis later

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 38 / 150

Convergence Rate Analysis (Convex): Fixed Step Size

Assume that f is convex & differentiable, with dom(f) = Rn and additionally

‖∇f(y)−∇f(x)‖2 ≤ L‖y − x‖2, ∀x,y

That is, ∇f is Lipschitz continuous with constant L > 0 (L-Lipschitz continuous)

Theorem 1 (Optimality Gap)

If f is convex, differentiable, and L-smooth, gradient descent with fixed step size
s ≤ 1/L satisfies

f(xk)− f(x∗) ≤ ‖x0 − x∗‖22
2sk

,

i.e., gradient descent method has sublinear convergence rate O(1/k).

Remark:

To get f(xk)− f(x∗) ≤ ε, it takes O(1/ε) iterations.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 39 / 150

Convergence Rate Analysis (Nonconvex): Fixed Step Size

Assume that f is nonconvex & differentiable, and L-smooth

Theorem 2 (Stationarity Gap)

If f is nonconvex, differentiable, and L-smooth, then gradient descent with fixed
step size s ≤ 1/L satisfies

min
t=0,...,k−1

‖∇f(xt)‖22 ≤
2(f(x0)− f∗)

sk

i.e., gradient descent method has sublinear convergence rate O(1/k).

Remark:

To get ‖∇f(xk)‖2 ≤ ε for some k, it takes O(ε−2) iterations.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 40 / 150

Strategy 2: Exact Line Search

Choose the step size s to do the “best” we can along the direction of −∇f(x):

s = arg min
t≥0

f(x− t∇f(x))

Limitations:

Usually it’s too expensive to do this in each iteration.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 41 / 150

Strategy 3: Inexact Line Search – Backtracking

One way to adaptively choose step size is to use backtracking line search

1 First fix parameters 0 < β < 1 and 0 < α ≤ 1
2

2 At each iteration, start with s = 1, and while

f(x− s∇f(x)) > f(x)− αs‖∇f(x)‖22

shink s = βs. Else, perform gradient descent update:

x+ = x− s∇f(x)

Remarks:

Simple and tends to work well in practice (further simplification: just take
α = β = 1/2). But doesn’t work for f nonsmooth

Also referred to as Armijo’s rule. Step size shrinking very aggressively

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 42 / 150

Backtracking Interpretation

f(x)− αs‖∇f(x)‖22

s = 0

f(x− s∇f(x))

s0

s

f(x)− s‖∇f(x)‖22

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 43 / 150

Backtracking Example

Backtracking picks up roughly the right step size (12 outer iterations, 40
iterations in total):

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 44 / 150

Outline for First-Order Methods

Convergence Rate Concept

The Gradient Descent Method

The Stochastic Gradient Descent Method

Variance-Reduced Stochastic First-Order Methods

Adaptive First-Order Methods

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 45 / 150

Unbiased Stochastic Gradient

Random vector g̃ ∈ Rn is a unbiased stochastic gradient if it can be written
as g̃ = g + n, where g is the true gradient and E[n] = 0

n can be interpreted as error in computing g, measurement noise, Monte
Carlo sampling errors, etc.

If f(·) is non-smooth, g̃ is a noisy unbiased subgradient at x if

f(z) ≥ f(x) + (E[g̃|x])>(z− x), ∀z

holds almost surely.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 46 / 150

Stochastic Gradient Descent Method

Consider minx∈Rn f(x). Following standard GD, we should do:

xk+1 = xk − skE[g̃k|xk]

However, E[g̃k|xk] is difficult to compute: Unknown distribution, too costly
to sample at each iteration k, etc.

Idea: Simply use a noisy unbiased subgradient to replace E[g̃k|xk]

The stochastic subgradient method works as follows:

xk+1 = xk − skg̃k
I xk is the k-th iterate
I g̃k is any noisy gradient of at xk, i.e., E[g̃k|xk] = ∇f(xk)
I sk is the step size
I Let f

(k)
best , min

i=1,...,k
{f(xi)} and ‖∇f (k)

best‖ , min
i=1,...,k

{‖∇f(xi)‖}

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 47 / 150

Historical Perspective

Also referred to as stochastic approximation in the literature, first introduced
by [Robbins, Monro ’51] and [Keifer, Wolfowitz ’52]

The original work [Robbins, Monro ’51] is motivated by finding a root of a
continuous function:

f(x) = E[F (x, θ)] = 0,

where F (·, ·) is unknown and depends on a random variable θ. But the
experimenter can take random samples (noisy measurements) of F (x, θ)

Herbert Robbins Sutton Monro

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 48 / 150

Historical Perspective

Robbins-Monro: xk+1 = xk + skY (xk, θ), where:
I E[Y (x, θ)|x = xk] = f(xk) is an unbiased estimator of f(xk)
I Robbins-Monro originally showed convergence in L2 and in probability
I Blum later prove convergence is actually w.p.1. (almost surely)
I Key idea: Diminishing step-size provides implicit averaging of the observations

Robbins-Monro’s scheme can also be used in stochastic optimization of the
form f(x∗) = minx E[F (x, θ)] (equivalent to solving ∇f(x∗) = 0)

Stochastic approximation, or more generally, stochastic gradient has found
applications in many areas

I Adaptive signal processing
I Dynamic network control and optimization
I Statistical machine learning
I Workhorse algorithm for training deep neural networks

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 49 / 150

Assumptions and Step Size Rules

f∗ = infx f(xk) > −∞, with f(x∗) = f∗

E[‖g̃k‖22] ≤ G2, for all k

E[‖x0 − x∗‖22] ≤ R2

Commonly used step-size strategies:

Constant step-size: sk = s, ∀k

Step-size is square summable, but not summable

sk > 0, ∀k,
∞∑
k=1

s2
k <∞,

∞∑
k=1

sk =∞

Note: This is stronger than needed, but just to simplify proof

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 50 / 150

Convergence of SGD (Convex)

Convergence in expectation:

lim
k→∞

E[f
(k)
best] = f∗

Convergence in probability: for any ε > 0,

lim
k→∞

Pr{|f (k)
best − f∗| > ε} = 0

Almost sure convergence

Pr
{

lim
k→∞

f
(k)
best = f∗

}
= 1

See [Kushner, Yin ’97] for a complete treatment on convergence analysis

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 51 / 150

Convergence Rate (Nonconvex) – Finite Sum

Consider the following finite-sum minimization

min
x∈Rd

f(x) = min
x∈Rd

1

N

N∑
i=1

fi(x)

where N is typically large, e.g., empirical risk minimization (ERM) in ML

Consider using SGD to solve this problem under the following assumptions:
I f(·) is nonconvex and bounded from below

I ∇f is differentiable with L-Lipschitz continuous gradients (L-smooth)

I E[‖∇fi(x)‖2] ≤ σ2 for some σ2 and all x (bounded gradient, can be relaxed)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 52 / 150

Convergence Rate (Nonconvex) – Finite Sum

Theorem 3 (Stationarity Gap)

If the finite-sum problem f(·) is nonconvex, differentiable, and L-smooth, then
the SGD method with step-sizes {sk} satisfies

min
k=0,1,...,t−1

{‖∇f(xk)‖22} ≤
f(x0)− f∗∑t−1

k=0 sk
+
Lσ2

2

∑t−1
k=0 s

2
k∑t−1

k=0 sk
.

Remark:

If σ2 = 0 (GD), then a constant step-size recovers an O(1/t) rate.

Classical diminishing step-sizes sk = α/k for some α > 0:∑
k sk = O(log(t)) and

∑
k s

2
k = O(1). So convergence rate is O(1/ log(t))

Diminishing step-sizes sk = α/
√
k for some α > 0:

∑
k sk = O(

√
t) and∑

k s
2
k = O(log(t)). So convergence rate is O(log(t)/

√
t) = Õ(1/

√
t)

Constant step-sizes sk = α for some α > 0:
∑
k sk = kα and

∑
k s

2
k = kα2.

So convergence rate is O(1/t) +O(α)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 53 / 150

Convergence Rate (Nonconvex) - Finite Sum+Time Oracle

Theorem 4 ([Ghadimi & Lan ’13])

Suppose f(·) is L-smooth and has σ-bounded gradients and it is known a priori
that the SGD algorithm will be executed for T iterations. Let sk = c/

√
T , where

c =

√
2(f(x0)− f∗)

Lσ2
.

Then, the iterates of SGD satisfy

min
0≤t≤T−1

E[‖∇f(xt)‖2] ≤
√

2(f(x0)− f∗)L
T

σ.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 54 / 150

Convergence Rate (Nonconvex) - General Expectation
Minimization with Batching

Consider the following general expectation minimization problem

f(x) = Eξ[f(x, ξ)],

where ξ is a random vaiable with distribution D.

Consider using SGD to solve this problem under the following assumptions:
I f(·) is nonconvex and bounded from below

I ∇f is differentiable with L-Lipschitz continuous gradients (L-smooth)

I Eξ[f(x, ξ)] = ∇f(x) and Eξ[‖f(x, ξ)−∇f(x)‖22] ≤ σ2

A common approach in SGD: Rather than choosing one training sample
randomly at a time, use a larger random mini-batch of samples Bk, with
|Bk| = Bk. Then, gk = 1

Bk

∑Bk
i=1∇f(x, ξi). SGD becomes:

xk+1 = xk − skgk = xk −
sk
Bk

Bk∑
i=1

∇f(x, ξi),

where ξ1, . . . , ξBk are i.i.d. sampled from D
JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 55 / 150

Convergence Rate (Nonconvex) - General Expectation
Minimization with Batching

Theorem 5 (Stationarity Gap)

In the expectation minimization problem, supposed that f(·) is nonconvex,
differentiable, and L-smooth. For any given ε > 0, then the SGD method with

mini-batch size Bk = B = max{1, 2σ2

ε2 }, ∀k, and step-sizes sk ≤ 1
2L , ∀k, satisfies

E[‖∇f(x̂t)‖22] ≤ 4L(f(x0)− f∗)
t

+
ε2

2
, (1)

where x̂t is chosen uniformly at random from x0, . . . ,xt−1.Thus, Eq. (1) implies

that taking t = d 8L(f(x0)−f∗)
ε2 e yields E[‖∇f(x̂t)‖22] ≤ ε2.

Sample Complexity Bound:

t−1∑
k=0

Bk =
2σ2

ε2
t =

⌈
16L(f(x0)− f∗)σ2

ε4

⌉
= O(ε−4)

Optimal up to constant factors (see [Arjevani et al. 2019] for lower bound)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 56 / 150

Mini-Batching SGD as Gradient Descent with Error

SGD with mini-batcch:

xk+1 = xk −
sk
Bk

Bk∑
i=1

∇f(x, ξi)

This can be viewed as a “gradient descent with error”

xk+1 = xk − sk(∇f(xk) + ek),

where ek is the difference between approximation and true gradient

By setting sk = 1/L, it can be shown that

f(xk+1) ≤ f(xk)− 1

2L
‖∇f(xk)‖2︸ ︷︷ ︸

good

+
1

2L
‖ek‖2︸ ︷︷ ︸
bad

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 57 / 150

Mini-Batching SGD as Gradient Descent with Error

SGD progress bound with sk = 1/L and error is:

f(xk+1) ≤ f(xk)− 1

2L
‖∇f(xk)‖2︸ ︷︷ ︸

good

+
1

2L
‖ek‖2︸ ︷︷ ︸
bad

Relationship between “error-free” rate and “with error” rate:
I If “error-free” rate is O(1/k), you maintain this rate if ‖ek‖2 = O(1/k)
I If “error-free” rate is O(ρk), you maintain this rate if ‖ek‖2 = O(ρk)
I If error goes to zero more slowly, error vanishing rate is the “bottleneck”

So, need to know how batch-size Bk affects ‖ek‖2

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 58 / 150

Mini-Batching SGD as Gradient Descent with Error

Sample with replacement:

E[‖ek‖2] =
1

Bk
σ2,

where σ2 is the variance of the stochastic gradient norm (i.e., doubling the
batch-size cuts the error in half)

Sample without replacement (from a dataset of size N):

E[‖ek‖2] =
N −Bk
N − 1

1

Bk
σ2,

i.e., driving error to zero as batch size approaches N

Growing batch-size:
I For O(ρk) linear convergence: need Bk+1 = Bk/ρ
I For O(1/k) sublinear convergence: need Bk+1 = Bk + const.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 59 / 150

Mini-Batching SGD as Gradient Descent with Error

SGD with mini-batcch:

xk+1 = xk −
sk
Bk

Bk∑
i=1

∇f(x, ξi)

For a fixed Bk: sublinear convergence rate
I Fixed step-size: sublinear convergence to an error ball around a stationary

point
I Diminishing step-size: sublienar convergence to a stationary point

Can grow Bk to achieve faster rate:
I Early iterations: cheap SG iterations
I Later iterations: Use larger batch-sizes (no need to play with step-sizes)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 60 / 150

Outline for First-Order Methods

Convergence Rate Concept

The Gradient Descent Method

The Stochastic Gradient Descent Method

Variance-Reduced Stochastic First-Order Methods

Adaptive First-Order Methods

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 61 / 150

Recap: Stochastic Gradient Descent

SGD Convergence Performace
I Constant step-size: SGD converges quickly to an approximation

F Step-size s and batch size B, converges to a sσ2

B
-error ball

I Decreasing step-size: SGD converges slowly to exact solution

Two “control knobs” to improve SGD convergence performance
I Decrease (gradually) step-sizes:

F Improves convergence accuracy
F Make convergence too slow

I Increase batch-sizes:
F Leads to faster rate of iterations
F Makes setting step-sizes easier
F But increases the iteration cost

Question: Could we achieve fast convergence rate with small batch-size?

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 62 / 150

Stochastic Average Gradient (SAG)

Growing batch-size Bk eventually requires O(N) samples per iteration

Question: Can we achieve one sample per iteration and same iteration
complexity as deterministic first-order methods?

Answer: Yes, the first method was the stochastic average gradient (SAG)
method [Le Roux et al. 2012]

To understand SAG, it’s insightful to view GD as performing the following
iteration in solving the finite-sum problem:

xk+1 = xk −
sk
N

N∑
i=1

vik

where in each step we set vik = ∇fi(xk) for all i

SAG method: Only set vikk = ∇fik(xk) for randomly chosen ik
I All other v

ik
k are kept at their previous values (a lazy update approach)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 63 / 150

Stochastic Average Gradient (SAG)

One can think of SAG as having a memory:
v1

v2

...
vN

,
where vi is the gradient ∇fi(xk′) from the last k′ where i is selected

In each iteration:
I Randomly choose one of the vi and update it to the current gradient
I Take a step in the direction of the average of these vi

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 64 / 150

Stochastic Average Gradient (SAG)

Basic SAG algorithm (maintains g =
∑N
i=1 v

i):
I Set g = 0 and gradient approximation vi = 0 for i = 1, . . . , N .
I while (1):

1 Sample i from {1, 2, . . . , N}
2 Compute ∇fi(x)
3 g = g − vi +∇fi(x)
4 vi = ∇fi(x)
5 x+ = x− s

N
g

Iteration cost is O(d) (one sample)

Memory complexity is O(Nd)
I Could be less if the model is sparse
I Could reduce to O(N) for linear models fi(x) = h(x>ξi):

∇fi(x) = h′(x>ξi)︸ ︷︷ ︸
scalar

xi︸︷︷︸
data

I But for neural networks, would still need to store all activations (typically
impractical)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 65 / 150

Stochastic Average Gradient (SAG)

The SAG algorithm:

xk+1 = xk −
sk
N

N∑
i=1

vik,

where in each iteration, vikk = ∇fik(xk) for a randomly chosen ik

Unlike batching in SGD, use a “gradient” for every sample
I But the gradient might be out of date due to lazy update

Intuition: vik → ∇fi(x∗) at the same rate that xk → x∗

I so the variance ‖ek‖2 (“bad term”) converges linearly to 0

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 66 / 150

Convergence Rate of SAG

Theorem 6 ([Le Roux et al. 2012])

If each ∇fi is L-Lipschitz continuous and f is strongly convex, with sk = 1/16L,
SAG satisfies:

E[f(xk)− f∗] = O

((
1−min

{
µ

16L
,

1

8N

})k)

Sample Complexity: Number of ∇fi evaluations to reach accuracy ε:
I Stochastic: O(L

µ
(1/ε))

I Gradient: O(nL
µ

log(1/ε))

I Nesterov: O(n
√

L
µ

log(1/ε))

I SAG: O(max{n, L
µ
} log(1/ε))

Note: L values are different between algorithms

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 67 / 150

Stochastic Variance-Reduced Gradient (SVRG)
Idea: Get rid of memory by periodically computing full gradient
[Johnson&Zhang,’13]

Start with some x̃0 = x0
m = x0, where m is a parameter. Let S = dT/me

for s = 0, 1, 2, . . . , S − 1
I xs+1

0 = xsm
I ∇f(x̃s) = 1

N

∑N
i=1∇fi(x̃

s)
I for k = 0, 1, 2, . . . ,m− 1

F Uniformly pick a batch Ik ⊂ {1, 2, . . . , N} at random (with replacement), with
batch size |Ik| = B

F Let vs+1
k = 1

B

∑B
i=1[∇fik (xs+1

k)−∇fik (x̃s)] +∇f(x̃s)

F xk+1 = xk − skvs+1
k

I x̃s+1 = xs+1
m

Output: Chose xa uniformly at random from {{xs+1
k }m−1

k=0 }S−1
s=0

Convex settings: Convergence properties similar to SAG for suitable m

Unbiased: E[vs+1
k] = ∇f(xs+1

k)

Theoretically m depends on L, µ, and N (m = N works well empirically)

O(d) storage complexity (2B+1 gradients per iteration on average)

Last step x̃s+1 in outer loop can be randomly chosen from inner loop iterates

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 68 / 150

Convergence Rate of SVRG (Nonconvex)

Consider finite-sum problem minx∈Rd f(x) , 1
N

∑N
i=1 fi(x), where both f(·)

and fi(·) are nonconvex, differentiable, and L-smooth.

Define a sequence {Γk} with Γk , sk − ck+1sk
βk

− s2
kL− 2ck+1s

2
k, where

parameters ck+1 and βk are TBD shortly.

Theorem 7 ([Reddi et al. ’16])

Let cm = 0, sk = s > 0, βk = β > 0, and
ck = ck+1(1 + sβ + 2s2L2/B) + s2L3/B such that Γk > 0 for k = 0, . . . ,m− 1.
Let γ = mink Γk. Also, let T be a multiple of m. Then, the output xa of SVRG
satisfies:

E[‖∇f(xa)‖2] ≤ f(x0)− f∗
Tγ

.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 69 / 150

SAGA (SAG Again?)

Basic SAGA algorithm [Defazio et al. 2014]: Similar in spirit to SAG

Initialize x0; Create a table, containing gradients and vi0 = ∇fi(x0)

In iterations k = 0, 1, 2, . . .:

1 Pick a random ik ∈ {1, . . . , N} uniformly at random and compute ∇fik (xk).

2 Update xk+1 as follows:

xk+1 = xk − sk

(
∇fik (xk)− v

ik
k +

1

N

N∑
i=1

vik

)

3 Update table entry v
ik+1

k = ∇fi(xk). Set all other vik+1 = vik, i 6= ik, i.e.,
other table entries remain the same

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 70 / 150

SAGA (SAG Again?)

SAGA basically matches convergence rates of SAG (for both convex and
strongly convex cases), but the proof is simpler (due to unbiasedness)

Another strength of SAGA is that it can extend to composite problems:

min
x

1

N

N∑
i=1

fi(x) + h(x),

where each fi(·) is L-smooth, and h is convex and non-smooth, but has a
known proximal operator

xk+1 = proxh,sk

{
xk − sk

(
∇fik(xk)− vikk +

1

N

N∑
i=1

vik

)}
.

But it is unknown whether SAG is convergent or not under proximal operator

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 71 / 150

SAGA Variance Reduction

Stochastic gradient in SAGA:

∇fik(xk)︸ ︷︷ ︸
X

−
(
vikk −

1

N

N∑
i=1

vik

)
︸ ︷︷ ︸

Y

Note: E[X] = ∇f(xk) and E[Y] = 0⇒ we have an unbiased estimator

Note: X − Y → 0 as k →∞, since xk and xk−1 converges to some x̄, the
difference between the first two terms converges to zero. The last term
converges to gradient at stationarity, i.e., also zero

Thus, the overall `2 norm estimator (i.e., variance) decays to zero

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 72 / 150

Comparisons between SAG, SVRG, and SAGA

A general variance reduction approach: Want to estimate E[X]

Suppose we can compute E[Y] for a r.v. Y that is highly correlated with X

Consider the estimator θa as an approximation to E[X]:

θα , α(X − Y) + E[Y], for some α ∈ (0, 1]

Observations:
I E[θα] = αE[X] + (1− α)E[Y], i.e., a convex combination of E[X] and E[Y].
I Standard VR: α = 1 and hence E[θα] = E[X]
I Variance of θα: Var(θα) = α2[Var(X) + Var(Y)− 2Cov(X,Y)]
I If Cov(X,Y) is large, variance of θα is reduced compared to X
I Letting α from 0 to 1, Var(X) ↑ to max value while decreasing bias to zero

SAG, SVRG, and SAGA can be derived from this VR viewpoint:
I SAG: Let X = ∇fik (xk) and Y = v

ik
k , α = 1/N (biased)

I SAGA: Let X = ∇fik (xk) and Y = v
ik
k , α = 1 (unbiased)

I SVRG: Let X = ∇fik (xk) and Y = ∇fik (x̃), α = 1 (unbiased)
I Variance of SAG is 1/N2 times of that of SAGA

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 73 / 150

Comparisons between SAG, SVRG, and SAGA

Update rules:

(SAG) xk+1 = xk − s
[

1

N
(∇fik(xk)− vikk) +

1

N

N∑
i=1

vik

]

(SAGA) xk+1 = xk − s
[
∇fik(xk)− vikk +

1

N

N∑
i=1

vik

]

(SVRG) xk+1 = xk − s
[
∇fik(xk)−∇fik(x̃) +

1

N

N∑
i=1

∇fi(x̃)

]

SVRG: x̃ is not updated very step (only updated in the start of outer loops)

SAG & SAGA: Update vikk in the table each time index ik is picked

SVRG vs. SAGA:
I SVRG: Low memory cost, slower convergence (same convergence rate order)
I SAGA: High memory cost, (arguably) faster convergence

SAGA can be viewed as a midpoint between SAG and SVRG

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 74 / 150

Stochastic Recursive Gradient Algorithm (SARAH)

Sample complexity of GD, SGD, SVRG, and SAGA for ε-stationarity:
I GD and SGD require O(Nε−2) and O(ε−4), respectively1

I B = 1: Both SVRG and SARAH guarantee only O(Nε−2), same as GD
I B = N

2
3 : Both SVRG and SAGA achieve O(N

2
3 ε−2), N

1
3 times better than

GD in terms of dependence on N

However, the sample complexity lower bound is Ω(
√
Nε−2)

I There exist sample complexity order-optimal algorithms (e.g., SPIDER [Fang
et al. 2018] and PAGE [Li et al. 2020])

These order-optimal algorithms are variants of SARAH [Nguyen et al. 2017]
I Sample complexity for convex and strongly convex problems: O(N + 1/ε2)

and O((N + κ) log(1/ε)), respectively (κ = L/µ, a single outer loop)
I Sample complexity for nonconvex problems: O(N + L2/ε4) (step size
s = O(1/L

√
T), non-batching, a single outer loop)

1For simplicity, we ignore all other parameters except N and ε here.
JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 75 / 150

Stochastic Recursive Gradient Algorithm (SARAH)

The SARAH algorithm:

Pick learning rate η > 0 and inner loop size m

for s = 0, 1, 2, . . . , S − 1
I xs+1

0 = x̃s

I vs+1
0 = 1

N

∑N
i=1∇fi(x

s+1
0)

I xs+1
1 = xs+1

0 − ηvs+1
0

I for k = 1, 2, . . . ,m− 1
F Uniformly pick a batch Ik ⊂ {1, 2, . . . , N} at random (with replacement), with

batch size |Ik| = B
F Let vs+1

k = 1
B

∑
i∈Ik [∇fik (xs+1

k)−∇fik (xs+1
k−1)] + vs+1

k−1

F xs+1
k+1 = xs+1

k − ηvs+1
k

I x̃s+1 = xs+1
k with k chosen uniformly at random from {0, 1, . . . ,m}

Output: Chose xa uniformly at random from {{xs+1
k }m−1

k=0 }S−1
s=0

Comparison to SVRG (ignoring outer loop index s):

SVRG: vk = ∇fik(xk)−∇fik(x0) + v0 (unbiased)

SARAH: vk = ∇fik(xk)−∇fik(xk−1) + vk−1 (biased)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 76 / 150

SPIDER/SpiderBoost

SPIDER [Fang et al. 2018]: Provides the first sample complexity lower bound
and the first sample complexity order-optimal algorithm

I SPIDER stands for “stochastic path-integrated differential estimator”

I Lower bound O(
√
Nε−2) for small data regime N = O(L2(f(x0)− f∗)ε−4)

I SPIDER achieves sample complexity O(
√
Nε−2)

I However, requires very small step-size O(ε/L), poor convergence in practice

I Original proof of SPIDER is technically too complex and hence hard to
generalize the method to composite optimization problems

SpiderBoost [Wang et al. 2018] [Wang et al. NeurIPS’19]:

I Same algorithm, same sample complexity, but relax the step-size to O(1/L)

I Simpler proof and can be generalized to composite optimization problems

I Also works well with heavy-ball momentum

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 77 / 150

SPIDER/SpiderBoost

The SpiderBoost Algorithm

Pick learning rate s = 1/2L, epoch length m, starting point x0, batch size
B, number of iteration T

for k = 0, 1, 2, . . . , T − 1
if k mod m = 0 then

Compute full gradient vk = ∇f(xk)
else

Uniformly randomly pick Ik ⊂ {1, . . . , N} (with replacement)
with |Ik| = B. Compute

vk =
1

B

∑
i∈Ik

[∇fi(xk)−∇fi(xk−1)] + vk−1

end if
Let xk+1 = xk − svk

end for
Output: xξ, where ξ is picked uniformly at random from {0, . . . , T − 1}

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 78 / 150

Probabilistic Gradient Estimator (PAGE)

SPIDER/SpiderBoost: Sample complexity LB is for small data regime

PAGE [Li et al. ICML’21]: Proved the lower bound Ω(N +
√
Nε−2) without

any assumption on data set size N and provided a new order-optimal method
I A variant of SPIDER with random length of inner loop, making the algorithm

easier to analyze

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 79 / 150

Probabilistic Gradient Estimator (PAGE)

The PAGE Algorithm

Pick x0, step-size s, mini-batch sizes B and B′ < B, probabilities
{pk}k≥0 ∈ (0, 1], number of iterations T

Let g0 = 1
B

∑
i∈I ∇fi(x0), where I is a random mini-batch with |I| = B

for k = 0, 1, 2, . . . , T − 1

xk+1 = xk − sgk,

gk+1 =

{
1
B

∑
i∈Ik ∇fi(xk+1), w.p. pk,

gk + 1
B′

∑
i∈I′k

[∇fi(xk+1)−∇fi(xk)], w.p. 1− pk,

where |Ik| = B and |I ′k| = B′

end for

Output: x̂T chosen uniformly from {xk}Tk=1

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 80 / 150

Summary of Sample Complexity Results for VR Methods

Method References Sample Complexity

Lower Bound [Fang et al. NeurIPS’18] L∆0 min{σε−3,
√
Nε−2}

GD NL∆0ε−2

SGD (bnd. var.) [Ghadimi & Lan, SIAM-JO’13] L∆0 max{ε−2, σ2ε−4}
SGD (ubd. var.) [Khaled & Richtarik, ’20] L2∆0

ε4
max{∆0,∆∗}

SVRG (B = 1) [Reddi et al. NeurIPS’16] NL∆0ε−2

SVRG (B = dN
2
3 e) [Reddi et al. NeurIPS’16] N

2
3L∆0ε−2

SAGA (B = 1) [Reddi et al. NeurIPS’16] NL∆0ε−2

SAGA (B = dN
2
3 e) [Reddi et al. NeurIPS’16] N

2
3L∆0ε−2

SpiderBoost [Wang et al. NeurIPS’19] N
1
2L∆0ε−2

SPIDER [Fang et al. NeurIPS’18] L∆0 min{σε−3,
√
Nε−2}

PAGE [Li et al. ICML’21] L∆0 min{σε−3,
√
Nε−2}

Notation: ∆0 = f(x0)− f∗, ∆∗ = 1
N

∑N
i=1(f∗ − f∗i), σ2 is a uniform bound for the

variance of stochastic gradient, B is batch size

All results are for finite-sum with L-smooth summands. Sample complexity means the

overall number of stochastic first-order oracle calls to find an ε-stationary point

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 81 / 150

Caveat of Variance-Reduced Methods
In deep neural networks training, VR methods work typically worse than SGD
or SGD+Momentum [Defazio & Bottou, NeurIPS’19]

I Bad behavior of VR methods with several widely used deep learning tricks
(e.g., batch normalization, data augmentation and dropout)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 82 / 150

Outline for First-Order Methods

Convergence Rate Concept

The Gradient Descent Method

The Stochastic Gradient Descent Method

Variance-Reduced Stochastic First-Order Methods

Adaptive First-Order Methods

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 83 / 150

Motivation

Recall that SGD has two hyber-parameter “control knobs” for convergence
performance

I Step-size
I Batch-size

A significant issue in SGD and variance-reduced versions: Tuning parameters
I Time-consuming, particularly for training deep neural networks
I Thus, adaptive first-order methods have received a lot of attention

The most popular ones that spawn many variants:
I AdaGrad: [Duchi et al. JMLR’11]
I RMSProp: [Hinton, ’12]
I Adam: [Kingma & Ba, ICLR’15] (AMSGrad [Reddi et al. ICLR’18])
I All of these methods still depend on some hyper-parameters, but they are

more robust than other variants of SGD or variance-reduced methods
I One can find PyTorch implementations of these popular adaptive first-order

meth methods

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 84 / 150

AdaGrad

AdaGrad stands for “adaptive gradient.” It is the first algorithm aiming to
remove the need for turning the step-size in SGD:

xk+1 = xk − s(δI + Diag{Gk})−
1
2gk,

where Gk =
∑k
t=1 gtg

>
t , s is an initial learning rate, and δ > 0 is a small

value to prevent from the division by zero (typically on the order of 10−8)

Entry-wise version: (ak,i denotes the i-th entry of ak)

xk+1,i = xk,i −
sk√

δ +Gk,i
gk,i,

where Gk,i =
∑k
t=1(gt,i)

2. Typically, sk = s, ∀k.

AdaGrad can be viewed as a special case of SGD with an adaptively scaled
step-size (learning rate) for each dimension (feature).

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 85 / 150

RMSProp

A major limitation of AdaGrad:
I Step-sizes could rapidly diminishing (particularly in dense settings), may get

stuck in saddle points in nonconvex optimization

RMSProp (root mean squared propagation)
I First appeared in Hinton’s Lecture 6 notes of the online course “Neural

Networks for Machine Learning.”
I Motivated by RProp [Igel & Hüsken, NC’00] (resolving the issue that gradients

may vary widely in magnitudes, only using the sign of the gradient)
I Unpublished (and being famous because of this! ,)
I Idea: Keep an exponential moving average of squared gradient of each weight

E[g2
k+1,i] = βE[g2

k,i] + (1− β)(∇if(xk))2,

xk+1,i = xk,i −
sk

(δ + E[g2
k+1,i])

1
2

∇if(xk).

RMSProp vs. AdaGrad
I AdaGrad: Keep a running sum of squared gradients
I RMSProp: Keep an exponential moving average of squared gradients

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 86 / 150

Adam

Stands for adaptive momentum estimation [Kingma & Ba, ICLR’15]

Motivated by RMSProp, also aims to address the limitation of AdaGrad

Algorithm: (gk , ∇f(xk))

mk,i = β1mk−1,i + (1− β1)gk,i, m̂k,i =
mk,i

1− (β1)k
,

vk,i = β2vk−1,i + (1− β2)(gk,i)
2, v̂k,i =

vk,i
1− (β2)2

,

xk+1,i = xk,i −
sk√

v̂k,i + δ
m̂k,i, i = 1, . . . , d.

Parameters:
I β1 ∈ [0, 1): momentum parameter (β1 = 0.9 by default, β1 = 0 ⇒ RMSProp)
I β2 ∈ (0, 1): exponential average parameter (β2 = 0.999 in the original paper)

A flaw in convergence proof spotted by [Reddi et al. ICLR’18], leading to...

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 87 / 150

AMSGrad

Idea: Use a smaller learning rate and incorporate the intuition of slowly
decaying the effect of past gradient

The algorithm: In iteration k:

gk = ∇fk(xk)

mk = β1,kmk−1 + (1− β1,k)gk,

vk = β2vk−1 + (1− β2)gk ◦ gk,
v̂k = max(v̂k−1,vk), and V̂k = Diag(v̂k)

xk+1 = xk − skV̂−
1
2

k mk

Maintain the maximum of all vk until the present iteration and use the
maximum to ensure non-increasing learning rate

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 88 / 150

Convergence of Adaptive First-Order Methods

While faster convergence of adaptive methods over SGD has been widely
observed, their best-known convergence rate bounds so far are the same (or
even worse) than those of SGD

We adopt the proof in [Défossez et al. ’20] due to generality and simplicity

A unified formulation used in [Défossez et al. ’20] for AdaGrad and Adam
(0 < β2 ≤ 1 and 0 ≤ β1 < β2):

mk,i = β1mk−1,i +∇ifk(xk−1),

vk,i = β2vk−1,i + (∇ifk(xk−1))2,

xk,i = xk−1,i − sk
mk,i√
δ + vk,i

,

I AdaGrad: β1 = 0, β2 = 1, and sk = s

I Adam: Take sk = s(1− β1)

√
1−βk2
1−β2

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 89 / 150

Convergence of Adaptive First-Order Methods

Consider a general expectation optimization problem

min
x∈Rd

F (x) , min
x∈Rd

E[f(x)]

Notation: For a given time horizon T ∈ N, let τT be a random index with
value in {0, . . . , T − 1} so that Pr[τT = j] ∝ 1− βT−j1

I β1 = 0: Sampling τT uniformly in {0, . . . , T − 1} (note: no momentum)
I β1 > 0: The fast few 1

1−β1
iterations are sampled relatively rarely and older

iterations are sampled approximately uniformly

Assumptions:
I F is bounded from below: F (x) ≥ F ∗, x ∈ Rd
I `∞ norm of stochastic gradients is uniformly bounded almost surely: ∃ε > 0

s.t. ‖∇f(x)‖∞ ≤ R−
√
ε a.s.

I L-smoothness: ‖∇F (x)− F (y)‖2 ≤ L‖x− y‖2, ∀x,y ∈ Rd

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 90 / 150

Convergence of Adaptive First-Order Methods

Theorem 8 (Adam w/o Momentum, (AdaGrad))

Let the iterates {xk} be generated with β2 = 1, sk = s > 0, and β1 = 0. Then
for any T ∈ N, we have:

E[‖∇F (xτT)‖2] ≤ 2R
F (x0)− F ∗

s
√
T

+
1√
T

(4dR2 + sdRL) ln

(
1 +

TR2

ε

)
.

Theorem 9 (Adam w/o Momentum (RMSProp))

Let the iterates {xk} be generated with β2 ∈ (0, 1), sk = s
√

1−βk2
1−β2

with s > 0,

and β1 = 0. Then for any T ∈ N, we have:

E[‖∇F (xτT)‖2] ≤ 2R
F (x0)− F ∗

sT
+ C

(
1

T
ln

(
1 +

R2

(1− β2)ε

)
− ln(β2)

)
,

where constant C , 4dR2
√

1−β2
+ sdRL

1−β2
.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 91 / 150

Convergence of Adaptive First-Order Methods
Theorem 10 (AdaGrad w/ Momentum)

Let the iterates {xk} be generated with β2 = 1, sk = s > 0, and β1 ∈ (0, 1).
Then for any T ∈ N such that T > β1

1−β1
, we have:

E[‖∇F (xτT)‖2] ≤ 2R
√
T
F (x0)− F ∗

sT̃
+

√
T

T̃
C ln

(
1 +

TR2

ε

)
.

where T̃ = T − β1

1−β1
and C = sdRL+ 12dR2

1−β1
+ 2s2dL2β1

1−β1
.

Theorem 11 (Adam w/ Momentum)

Let {xk} be generated with β2 ∈ (0, 1), β1 ∈ [0, β2), and sk = s(1− β1)
√

1−βk2
1−β2

with s > 0. Then for any T ∈ N such that T > β1

1−β1
, we have:

E[‖∇F (xτT)‖2] ≤ 2R
F (x0)− F ∗

sT
+ C

(
1

T
ln

(
1 +

R2

(1− β2)ε

)
− ln(β2)

)
,

where T̃ = T − β1

1−β1
and C = sdRL(1−β1)

(1− β1β2)(1−β2)
+ 12dR2√1−β1

(1− β1β2)3/2
√

1−β2

+ 2s2dL2β1

(1− β1β2)(1−β2)3/2
.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 92 / 150

Theoretical Understanding of Adaptive Methods

Pros:
I [Zhang et al. NeurIPS’20]: Adam performs better than SGD when stochastic

gradients are heavy-tailed since Adam does an “adaptive gradient clipping”
I [Zhang et al. NeurIPS’20]: Also shows that SGD can fail to converge under

heavy-tailed situations, while clipped-SGD can.
I [Goodfellow & Bengio, ’16]: Clipped-SGD works better than SGD in vicinity of

extremely steep cliffs
I [Zhang et al. ICML’20]: Clipped-GD converges without L-smoothness (with

rate ε−2 while GD may converge arbitrarily slower

Cons:
I [Wilson et al. NeurIPS’17]: While converging faster in general, adaptive

first-order methods does not have good test error and generalization
performances in the over-parameterized regime. Adaptive methods often
generalize significantly worse than SGD. So one may need to reconsider the
use of adaptive methods to train deep neural networks

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 93 / 150

Limitations of Adaptive Methods

[Wilson et al. NeurIPS’17]: VGG+BN+Dropout network for CIFAR-10

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 94 / 150

Part IV

Zeroth-Order Methods for Learning

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 95 / 150

Overview of Zeroth-Order Methods

Zeroth-order (gradient free) method: Use only function values

I Reinforcement learning [Malik et al., AISTATS’20]
I Blackbox adversarial attacks on DNN [Papernot et al., CCS’17]
I Or problems with structure making gradients difficult or infeasible to obtain

Two major classes of zeroth-order methods

I Methods that do not have any connections to gradient
F Random search algorithm [Schumer and Steiglitz, TAC’68]
F Nelder-Mead algorithm [Nelder and Mead, Comp J. ’65]
F Model-based methods [Conn et al., SIAM’09]
F Stochastic three points methods (STP) [Bergou et al., SIAM J. Opt. ’20]
F STP with momentum [Gorbunov et al., ICLR’20]

I Methods that rely on gradient estimations
F More modern approach, the focus of this course

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 96 / 150

Outline for Zeroth-Order Methods

Representative Techniques for Random Directions of Gradient Estimations

Representative Variance-Reduced Zeroth-Order Methods

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 97 / 150

Basic Idea of (Deterministic) Gradient Estimation

Gradient estimation with finite-difference directional derivative estimation:

(Forward version): g(x) =

d∑
i=1

f(x + µei)− f(x)

µ
ei,

(Centered version): g(x) =

d∑
i=1

f(x + µei)− f(x− µei)
2µ

ei,

where ei is the i-th natural basis vector of Rn and µ is the sampling radius

For the gradient estimation above, it can be shown that for f ∈ C1,1
L (i.e.,

continuously differentiable with Lipschitz-continuous gradient)

‖g(x)−∇f(x)‖2 ≤ µL
√
d

Natural idea: Replace actual gradient with gradient estimation in any
first-order optimization scheme (deterministic ZO methods)

I Pro: Use Lipschitz-like bound above to characterize convergence performance
I Con: Suffer from problem dimensionality for large d (O(d) ZO-oracle calls)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 98 / 150

Randomized Gradient Estimation

Two-point random gradient estimator

∇̂f(x) = (d/µ)[f(x + µu)− f(x)]u,

where u is an i.i.d. random direction

(q + 1)-point random gradient estimator

∇̂f(x) = (d/(µq))

q∑
i=1

[f(x + µui)− f(x)]ui,

which is also referred to as average random gradient estimator

Benefits:
I Make every iteration simpler
I Easy convergence proof
I For problems limited to only several (or even one) ZO oracle queries

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 99 / 150

Formalization of Stochastic Zeroth-Order Methods

Consider the problem of the following form:

min
x∈Q⊆Rd

f(x)

A stochastic ZO method generates {xk} as follows:

xk+1 = A
(
f̂ ,X, P, {xi}ki=0, {ui}ki=0

)
I f̂ : ZO-oracle (could be noisy, i.e., f̂ is not necessarily equal to f ; e.g.,
f̂(x) = f(x) + ε(x) or f̂(x,u) = f(x) + ε(x,u) with Eu[f̂(x,u)] = f(x))

I {xi}ki=0: history of x-variables
I {ui}ki=0: random sampling directions
I P : parameters (dimension d of x, L-Lipschitz constant, etc.)

This lecture: Focus on non-convex objective function

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 100 / 150

Random Directions Gradient Estimations

Consider the following ZO scheme using gradient approximation:

xk+1 = xk − skg(xk,uk),

where g(xk,uk) follows the two-point random gradient estimator:

g(xk,uk) =
f̂(xk + µuk)− f̂(xk)

µ
uk

It makes sense to use centrally symmetric distributions for uk:

I Uniformly distributed over unit Euclidean sphere [Flaxman et al. SODA’05],
[Gorbunov et al. SIOPT’18], [Dvurechensky et al., E. J. OR’21]:

uk ∼ U{Sd−1}, where Sd−1 = {x ∈ Rd : ‖x‖2 = 1}

I Gaussian smoothing [Nesterov and Spokoiny, Math Prog.’06]:

uk ∼ N (0, Id)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 101 / 150

Gaussian Smoothing [Nesterov and Spokoiny, FCM’17]

Gaussian smoothing approximation:

fµ(x) =
1

κ

∫
Rd
f(x + µu)e−

1
2‖u‖

2
2du,

where κ =
∫
Rd e

− 1
2‖u‖

2
2du = (2π)d/2.

Good properties:
I Convexity preservation: If f is convex, so is fµ
I Differentiability
I If f ∈ C0,0

L0
(or f ∈ C1,1

L1
), the same holds for fµ with L0(fµ) ≤ L0(f) (or

L1(fµ) ≤ L1(f))
I |fµ(x)− f(x)| ≤ µL0

√
d if f ∈ C0,0

L0

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 102 / 150

Gaussian Smoothing [Nesterov and Spokoiny, FCM’17]

Consider the following algorithm:

xk+1 = xk − skg(xk,uk), and uk ∼ N (0, Id).

For nonconvex f ∈ C1,1
L1

, we have (let U = {uk}K−1
k=0):

1

K

K−1∑
k=0

EU [‖∇fµ(xk)‖22] ≤ 8(d+ 4)L1

[
fµ(x0)− f∗

K
+

3µ2(d+ 4)

32
L1

]

Using the facts that ‖fµ(x)−∇f(x)‖2 ≤ µL1

2 (d+ 3)
3
2 and

‖∇f(x)‖22 ≤ 2‖∇fµ(x)−∇f(x)‖22 + 2‖∇fµ(x)‖22, we obtain:

1

K

K−1∑
k=0

EU [‖∇f(xk)‖22] ≤ 2
µ2L2

1

4
(d+ 3)3

+ 16(d+ 4)L1

[
fµ(x0)− f∗

K
+

3µ2(d+ 4)

32
L1

]
JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 103 / 150

Gaussian Smoothing [Nesterov and Spokoiny, FCM’17]

Choosing µ = O(ε/[d3L1]) ensures 1
K

∑K−1
k=0 EU [‖∇f(xk)‖22] ≤ ε2, which

implies the following sample complexity:

K = O(dε−2).

For f ∈ C0,0
L0

, we have (let SK =
∑K−1
k=0 sk):

1

SK

K−1∑
k=0

skEU [‖∇fµ(xk)‖22] ≤ 1

SK

[
(fµ(x0)− f∗) +

1

µ
d

1
2 (d+ 4)2L3

0

K−1∑
k=0

s2
k

]

Consider a bounded domain Q with diam(Q) ≤ R. To ensure
1
K

∑K−1
k=0 EU [‖∇fµ(xk)‖22] ≤ ε2 and |fµ(x)− f(x)| ≤ δ, we have the

following sample complexity:

K = O

(
d(d+ 4)2L5

0R

ε4δ

)
.

If sk → 0 and µ→ 0, convergence of EU [‖∇f(xk)‖2] can also be proved.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 104 / 150

Extensions of Gaussian Smoothing to Noisy f̂

Consider the following:

Noisy f̂ : |f̂(x)− f(x)| ≤ δ
Hölder continuous gradient (intermediate smoothness)

‖∇f(x)−∇f(y)‖2 ≤ Lν‖x− y‖ν2 , for some ν ∈ [0, 1],

which implies the following generalized descent lemma:

f(y) ≤ f(x) +∇f(x)>(y − x) +
Lν

1 + ν
‖y − x‖1+ν

To ensure 1
K

∑K−1
k=0 EU [‖∇f(xk)‖22] ≤ ε2, we have the following sample

complexity [Shibaev et al., Opt. Lett. ’21]:

K = O

(
d2+ 1−ν

2ν

ε
2
ν

)
if δ = O

(
ε

3+ν
2ν

d
3+7ν
4ν

)
.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 105 / 150

Extensions of Gaussian Smoothing to Noisy f̂

Special case of ν = 1 (i.e., f ∈ C1,1
L1

): Sample complexity is improved to

K = O(dε−2),

which is d times better than [Nesterov and Spokoiny, FCM’17]

If |f̂(x)− f(x)| ≤ εf , where f is convex and 1-Lipschitz and

εf ∼ max{ε2/
√
d, ε/d}, then [Risteski and Li, NeurIPS’16] showed that there

exists an algorithm that finds ε-optimal solution (i.e., f̂(x)− f̂∗ ≤ ε) with
sample complexity Poly(d, ε−1). Also, the dependence εf (ε) is optimal

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 106 / 150

Randomized Stochastic Gradient-Free Methods

Gaussian smoothing is extended to [Ghadimi and Lan, SIAM J. Opt. ’13]
[Ghadimi et al., Math Prog. ’16] (unconstrained case, i.e., Q = Rd):

f̂ = F (x, ξ) such that Eξ[F (x, ξ)] = f(x), where ξ is a random variable
whose distribution P is supported on Ξ ⊆ Rd

F (·, ξ) has L1-Lipschitz continuous gradient

Consider the following randomized stochastic gradient-free method (RSGF):

xk+1 = xk − skG(xk, ξk,uk),

G(xk, ξk,uk) =
f̂(xk + µuk, ξk)− f̂(xk, ξk)

µ
uk

It follows from Eξ[F (x, ξ)] = f(x) that Eξ,u[G(x, ξ,u)] = ∇fµ(x)

Similar to FO-SGD in [Ghadimi and Lan, SIAM J. Opt. ’13], RSGF chooses
xR from {xk}Kk=1 where R is a r.v. with p.m.f. PR supported on {1, . . . ,K}

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 107 / 150

Randomized Stochastic Gradient-Free Methods

For f ∈ C1,1
L1

, smoothing parameter µ, Df = (2(f(x1)− f∗)/L)
1
2 , and

Eξ[‖∇f̂(x, ξ)−∇f(x)‖22] ≤ σ2 and p.m.f. of R being:

PR(k) =
sk − 2L(d+ 4)s2

k∑K
i=1(si − 2L(d+ 4)s2

i)
,

it then holds that:

1

L1
E[‖∇f(xR)‖22] ≤ 1∑K

k=1[sk − 2L1(d+ 4)s2
k]

[
D2
f + 2µ2(d+ 4)×(

1 + L1(d+ 4)2
K∑
k=1

(
sk
4

+ Ls2
k)

)
+ 2(d+ 4)σ2

K∑
k=1

s2
k

]
,

where the expectation is taken w.r.t. R and {ξk}.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 108 / 150

Randomized Stochastic Gradient-Free Methods

Choose constant step-size sk = 1√
d+4

min{ 1
4L
√
d+4

, D̃
σ
√
K
} for some D̃ > 0

(some estimation of Df):

1

L1
E[‖∇f(xR)‖22] ≤

12(d+ 4)L1D
2
f

K
+

2σ
√
d+ 4√
K

(
D̃ +

D2
f

D̃

)

To ensure Pr{‖∇f(xR)‖22 ≤ ε} ≥ 1− δ (i.e., (ε, δ)-solution), the
zeroth-order oracle sample complexity is:

O

(
dL2

1D
2
f

δε
+
dL2

1

δ2

(
D̃ +

D2
f

D̃

)
σ2

ε2

)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 109 / 150

Randomized Stochastic Gradient-Free Methods
Two-phase randomized stochastic gradient-free method (2-RSGF) [Ghadimi and
Lan, SIAM J. Opt. ’13]

Run RSGF S = log(1/δ) times as a subroutine producing a list {x̄k}Sk=1

Output point x̄∗ is chosen in such a way that:

‖g(x̄∗)‖2 = min
s=1,...,S

‖g(x̄s)‖2, where g(x̄s) =
1

T

T∑
k=1

Gµ(x̄s, ξk,uk),

where Gµ(x̄s, ξk,uk) is defined as in RSGF

The zeroth-order oracle sample complexity for achieving (ε, δ)-solution:

O

dL2
1D

2
f log(1/δ)

ε
+ dL2

1

(
D̃ +

D2
f

D̃

)2
σ2

ε2
log(1/δ) +

d log2(1/δ)

δ

(
1 +

σ2

ε

)
A more general problem minx∈Q⊆Rd Ψ(x) = f(x) + h(x) is also solved in
[Ghadimi et al., Math Prog.’16]

I f ∈ C1,1
L : nonconvex; h(x) is simple convex and possibly non-smooth

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 110 / 150

RSGF Based on Uniform Sampling over Unit Sphere

Consider the problem minx∈Rn f(x) , Eξ[F (x, ξ)] = Eξ[f̂(x, ξ)]
I f(x) is L-Lipschitz and µ-smooth
I |F (x, ξ)| ≤ Ω and F ’s variance is bounded by Vf

Stochastic gradient estimation based on uniform sampling over unit sphere:

g(xk, ξk,uk) = n
f̂(xk + µuk, ξk)− f̂(xk − µuk, ξk)

2µ
,

where uk ∼ U(Sn−1). The update process is xk+1 = xk − sg(xk, ξk,uk)

After K steps, we have [Sener and Koltun, ICML’20]:

1

K

K∑
k=1

E[‖∇f(xk)‖22] = O

(
n

K1/2
+
n2/3

K1/3

)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 111 / 150

RSGF Based on Uniform Sampling over Unit Sphere

Consider the case for a given ξ, F (x, ξ) = g(r(x, θ∗),Ψ∗), where g(·,Ψ) and
r(·, θ) are parameterized function classes

I r(·, θ∗) : Rn → Rd, where d� n
I F (·, ξ) : Rn → R is actually defined on a d-dimensional manifold M for all ξ

Thus, if one knows the manifold (i.e., θ∗) and g and r are smooth, we have

from chain rule: ∇f(x) = J(x, θ∗)∇rg(r,Ψ), where J(x, θ∗) = ∂r(x,θ∗)
∂x .

This leads to [Sener and Koltun, ICML’20]:

G(xk, ξk,uk) = d
f̂(xk + µJquk, ξk)− f̂(xk − µJquk, ξk)

2µ
uk,

where Jq is the orthonomalized J(xk, θ
∗) and uk ∼ U(Sd−1). It follows that

1

K

K∑
k=1

E[‖∇f(xk)‖22] = O

(
n1/2

K
+
n1/2 + d+ dn1/2

K1/2
+
d2/3 + n1/2d2/3

K1/3

)
.

which is much better than the previous bound for d ≤ n1/2.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 112 / 150

Which Gradient Estimation Works Better?

Gradient estimations with random directions are worse than finite differences
in terms of # of samples required to ensure the norm condition:

‖g(x)−∇f(x)‖2 ≤ θ‖∇f(x)‖2, for some θ ∈ [0, 1)

Gradient estimation methods are studied in [Berahas et al., FCM’21]:
Compare the # of calls r (i.e., “batch size”) to ensure norm condition

I FFD (Forward Finite Differences):
∑d
i=1

f̂(x+µei)−f̂(x)
µ

ei

I CFD (Centered Finite Differences):
∑d
i=1

f̂(x+µei)−f̂(x−µei)
2µ

ei

I LI (Linear Interpolation):
∑d
i=1

f̂(x+µui)−f̂(x)
µ

ui, ui = [Q]i

I GSG (Gaussian Smoothed Gradients): 1
r

∑r
i=1

f̂(x+µui)−f̂(x)
µ

ui, ui ∼ N (0, Id)

I cGSG (Centered GSG): 1
r

∑r
i=1

f̂(x+µui)−f̂(x−µui)
2µ

ui, ui ∼ N (0, Id)

I SSG (Sphere Smoothed Gradients): d
r

∑r
i=1

f̂(x+µui)−f̂(x)
µ

ui, ui ∼ U(Sd−1)

I cSSG (Centered SSG): d
r

∑r
i=1

f̂(x+µui)−f̂(x−µui)
2µ

ui, ui ∼ U(Sd−1)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 113 / 150

Which Gradient Estimation Works Better?

Consider an unconstrained problem minx∈Rd f(x) [Berahas et al., FCM’21]:

I Noisy ZO oracle: f̂(x) = f(x) + ε(x)
I Noise ε is bounded uniformly: |ε(x)| ≤ εf (noise not neccessarily random)
I f(x) ∈ C1,1

L or f(x) ∈ C2,2
M (twice continuously differentiable with

M -Lipschitz Hessian)

Method Number of calls r ‖∇f(x)‖2
FFD d

2
√
dLεf
θ

CFD d
2
√
d 3
√
Mε2

f
3√6θ

LI d
2‖Q−1‖

√
dLεf

θ

GSG 12d
σθ2

+ d+20
16δ

6d
√
Lεf
θ

cGSG 12d
σθ2

+ d+30
144δ

12 3
√
d7/2Mε2

f

θ

SSG [8d
θ2

+ 8d
3θ

+ 11d+104
24

] log d+1
δ

4d
√
Lεf
θ

cSSG [8d
θ2

+ 8d
3θ

+ 9d+192
27

] log d+1
δ

4 3
√
d7/2Mε2

f

θ

LI is essentially FFD with directions given as columns of a nonsingular matrix Q

For GSG, cGSG, SSG, and cSSG, results are w.p. 1− δ

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 114 / 150

Outline for Zeroth-Order Methods

Representative Techniques for Random Directions of Gradient Estimations

Representative Variance-Reduced Zeroth-Order Methods

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 115 / 150

Finite-Sum Minimization with VR Zeroth-Order Methods

Consider ZO methods for special case of min f(x): finite-sum minimization

min
x∈Rd

f(x) =
1

N

N∑
i=1

fi(x)

I We have studied finite-sum minimization with VR first-order methods

Need for solving finite-sum minimization problem with ZO methods:
I Reinforcement learning (e.g., [Fazel et al., ICML’18])
I Non-stationary online optimization problems [Zhang et al., arXiv:2010.07378]

We have seen that SGD-type ZO methods with noisy f̂ have sample
complexity O(dε−4) in the last lecture

Can we do better (at least for finite-sum minimization)?

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 116 / 150

Variance Reduction in First-Order Methods

SAG

SVRG

SAGA

SARAH

SPIDER/SpiderBoost

PAGE

We will develop their ZO counterparts

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 117 / 150

ZO-SVRG [Liu et al., NeurIPS’18]
A zeroth-order version of SVRG

Consider a non-convex finite-sum problem:

min
x∈Rd

f(x) =
1

N

N∑
i=1

fi(x)

I fi ∈ C1,1
L (‖∇fi(x)−∇fi(y)‖2 ≤ L‖x− y‖2, ∀x,y ∈ Rd, ∀i ∈ {1, . . . , N})

I Bounded variance of stochastic gradient: 1
N

∑N
i=1 ‖∇fi(x)−∇f(x)‖22 ≤ σ2

The following gradient estimations are used in [Liu, et al., NeurIPS’18]:

RandGradEst: ∇̂fi(x) =
d

µ
[fi(x + µui)− fi(x)]ui

Avg-RandGradEst: ∇̂fi(x) =
d

µq

q∑
j=1

[fi(x + µui,j)− fi(x)]ui,j

CoordGradEst: ∇̂fi(x) =
1

2µ

d∑
j=1

[fi(x + µjej)− fi(x− µjej)]ej

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 118 / 150

ZO-SVRG [Liu et al., NeurIPS’18]

The ZO-SVRG Algorithm

Required: Step-sizes {ηts}, epoch length T , starting point x0 ∈ Rd,
smoothing parameter µ, number of iterations K = S · T , φ0 = x0

0

for s = 0, 1, 2, . . . , S − 1
Compute ZO full gradient estimate ∇̂f(φs)
for t = 0, 1, 2, . . . , T − 1 then

Uniformly randomly pick It ⊂ {1, . . . , N} with |It| = B with
replacement. Compute:

vts =
1

B

∑
i∈It

[∇̂fi(xts)− ∇̂fi(φs)] + ∇̂f(φs)

xt+1
s = xts − ηtsvts

end for
Let φs+1 = x0

s+1 = xts
end for
Output: xξ, where ξ is picked uniformly at random from {0, . . . ,K − 1}

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 119 / 150

ZO-SVRG [Liu et al., NeurIPS’18]
Compared to FO-SVRG, the only difference is:

FO-SVRG: xt+1
s = xts − ηtsvts, vts = ∇fIt(xts)−∇fIt(x0

s) +∇f(x0
s)

ZO-SVRG: xt+1
s = xts − ηtsv̂ts, v̂ts = ∇̂fIt(xts)− ∇̂fIt(x0

s) + ∇̂f(x0
s)

where ∇̂fI(x) = 1
B

∑
i∈I ∇̂fi(x)

Key Problem: ∇̂f(x0
s) is no longer unbiased ZO gradient estimate

Under stated assumptions, ZO-SVRG after K = ST steps achieves:

RandGradEst: E[‖∇f(xξ)‖22] = O

(
d

T
+

1

B

)
Avg-RandGradEst: E[‖∇f(xξ)‖22] = O

(
d

T
+

1

Bmin{d, q}

)
CoordGradEst: E[‖∇f(xξ)‖22] = O

(
d

T

)
Insight: CoordGradEst (i.e., deterministic gradient estimation) achieves same
convergence rate as FO-SVRG

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 120 / 150

ZO-SVRG [Liu et al., NeurIPS’18]

Blackbox classification problem motivated by material science:
I A nonlinear least square problem fi(x) = (yi − φ(x;ai))

2 for i ∈ [N], where
φ(x,ai) is a blackbox function that only returns function value

I N = 1, 000 crystalline materials/compounds extracted from Open Quantum
Materials Database; each compound has d = 145 chemical features

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 121 / 150

SpiderSZO [Fang et al., NeurIPS’18]

Required: n0 = [1, 30(2d+9)σ
ε], Lipschitz constant L, epoch T , initial

x0 ∈ Rd, outer and inner batch-sizes B1 and B2, num. of iterations K = ST .

for k = 0, 1, 2, . . . ,K − 1
if mod (k, T) = 0 then

Uniformly randomly pick Ik ⊂ {1, . . . , N} with |Ik| = B1 with
replacement. Compute:

vk =
d∑
j=1

 1

B1

∑
i∈Ik

[fi(xk + µej)− fi(xk)]

µ

 ej

else
Create set of pairs Ik = {(i,ui)} w/ |Ik| = B2, where i ∼ U [N]
(with replacement) and indep. ui ∼ N (0, Id). Compute:

vk =
1

B2

∑
(i,ui)∈Ik

(
fi(xk + µui)− fi(xk)

µ
ui −

fi(xk−1 + µui)− fi(xk−1)

µ
ui

)
+vk−1

end if
Let xk+1 = xk − ηkvk, where ηk = min(ε

Ln0‖vk‖ ,
1

2Ln0
)

end for
Output: xξ, where ξ is picked uniformly at random from {0, . . . ,K − 1}

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 122 / 150

SpiderSZO [Fang et al., NeurIPS’18]

Learning rate ηk = min(ε
Ln0‖vk‖ ,

1
2Ln0

):

I Follows from normalized gradient descent (NGD) [Nesterov, Book’04]
I Inversely proportional to norm of “gradient”

Theorem 12 ([Fang et al., NeurIPS’18])

After K = O(ε−2) iterations, with O(dmin{N1/2ε−2, ε−3}) incremental
zeroth-order oracle (IZO, i.e., returning the value of fi(x) given x and i) calls,
SpiderSZO ensures that:

E[‖∇f(xξ)‖2] ≤ 6ε.

This result is better than the sample complexity of [Nesterov and Spokoiny,
FCM’17] by a factor of N1/2

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 123 / 150

Improved ZO-SVRG and ZO-SPIDER [Ji et al., ICML’19]

A tighter analysis for ZO-SVRG in [Ji et al., ICML’19]:
I ZO-SVRG-Coord has a better convergence rate E[‖∇f(xξ)‖22] = O(1/K)
I d times better than the previous analysis in [Liu et al., NeurIPS’18]
I To achieve an ε-stationary point (i.e., E[‖∇f(xξ)‖22] ≤ ε2), ZO-SVRG-Coord’s

function query complexity is O(min{N2/3dε−2, dε−10/3})

Proof Sketch:
1 Consider an intermediate variant of ZO-SVRG-Coord and ZO-SVRG-Ave

called ZO-SVRG-Coord-Rand that uses CFD and SSG for the ∇̂f(φs) and
∇̂fi(xts)− ∇̂fi(φs) parts in vts = 1

B

∑
i∈It [∇̂fi(x

t
s)− ∇̂fi(φs)] + ∇̂f(φs),

respectively, as opposed to [Liu et al., NeurIPS’18] that used only one type of
gradient estimation at once.

2 [Ji et al., ICML’19] showed that, although the replacement of SSG with CFD
requires d more oracle calls, it achieves more accurate gradient estimation,
which yields a convergence rate E[‖∇f(xξ)‖22] = O(1/K). So, the
convergence rate stays the same for ZO-SVRG-Coord.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 124 / 150

Improved ZO-SVRG and ZO-SPIDER [Ji et al., ICML’19]

A new variant of ZO-SPIDER in [Ji et al., ICML’19]: ZO-SPIDER-Coord:

I Similar to ZO-SVRG-Coord: Use CFD instead of GSG in SpiderSZO

I Show that ZO-SPIDER-Coord has the same convergence rate as SpiderSZO,
but with a bigger size-size ηk = 1/4L and doesn’t depend on ε (using similar
idea as in SpiderBoost)

I With appropriate choices of learning rate, sampling radius parameters, outer
batch size, ZO-SPIDER-Coord achieves a convergence rate O(

√
B1/K)

I To achieve an ε-stationary point (i.e., E[‖∇f(xξ)‖22] ≤ ε2), ZO-SVRG-Coord’s
function query complexity is O(min{N1/2dε−2, dε−3})

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 125 / 150

Improved ZO-SVRG and ZO-SPIDER [Ji et al., ICML’19]
Numerical result comparisons:

I Generation of black-box adversarial examples (DNN for MNIST handwritten
digit classification, use the blackbox attacking loss in [Liu et al. NeurIPS’18])

I Nonconvex logistic regression on LIBSVM [Chang and Lin, ACM TIST’11]

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 126 / 150

Part V

First-Order Optimization with Special

Geometric Structure

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 127 / 150

Outline

The Polyak- Lojasiewicz (PL) Condition and Convergence of Various Methods
under the PL Condition

The PL Condition and the Over-parameterized Regime

Star-Convexity and α-Weak-Quasi-Convexity

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 128 / 150

Convergence Results of Methods We Learned Thus Far

First-order and zeroth-order methods for nonconvex optimization in learning:

I GD/SGD-style algorithms

I Only focus on stationarity gap

I Typically sublinear convergence rates: O(1/K), O(1/
√
K), ... (O(1/K2) is

order-optimal)

Meanwhile, it’s well-known from convex optimization that:

I GD achieves linear convergence rate under strong convexity

I Convergence of global optimality

Can global linear convergence to optimality happen under weaker conditions?

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 129 / 150

The Polyak- Lojasiewicz Condition

Definition 13 ([Polyak, ’63], [Lojasiewicz, ’63])

A function f(x) is said to satisfy the Polyak- Lojasiewicz (PL) condition if for all
x ∈ Rd, there exists a constant µ > 0 such that:

2µ(f(x)− f(x∗)) ≤ ‖∇f(x)‖22.

Remarks

Aka “gradient dominated” condition (e.g., [Reddi et al., ICML’16])

Implies any stationary point is a global min, although not necessarily unique

Automatically holds for strongly convex functions

Many nonconvex functions satisfy PL condition, especially in the
over-parameterized regime

PL condition means that the optimality gap f(x)− f∗ is upper bounded by a
quadratic function of the stationarity gap

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 130 / 150

Nice Features of the PL Condition

Ease of verification compared to strong convexity (SC):
I One only needs to access ‖∇f(x)‖ and f(x). In comparison, SC requires

checking PD of the Hessian matrix H (accurate estimation of λmin(H))

Robustness of the condition
I ‖∇f(x)‖ is more resilient to perturbation of the obj function than λmin(H)

Allows multiple global minima:
I Modern ML problems are over-parameterized and have manifolds of global

minima, not compatible with SC in general but compatible with PL

Invariance under transformation:
I PL is invariant under a broad class of nonlinear coordinate transformations

arising from feature extraction/transformation of many ML applications

PL on manifolds:
I PL allows for efficient optimization on manifolds, while being invariant under

the choice of coordinates (see [Weber and Sra, arXiv:1710:10770]

Linear convergence of GD and SGD:
I PL is sufficient not only for GD but also for SGD

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 131 / 150

Gradient Descent under the PL Condition

Theorem 14 (Linear Convergence Rate for GD)

Consider the unconstrained optimization problem minx∈Rd f(x), where f has an
L-Lipschitz continuous gradient, a non-empty solution set X ∗, and satisfies the
PL condition. Then, the gradient descent method with a step-size of 1/L, i.e.,
xk+1 = xk − 1

L∇f(xk), has a global linear convergence rate:

f(xk)− f∗ ≤
(

1− µ

L

)k
(f(x0)− f∗).

Remarks

For twice differentiable functions, L-smoothness means eigenvalues of
∇2f(x) are bounded from above by L (curvature upper bound)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 132 / 150

Stochastic Gradient Descent under the PL Condition

The finite-sum minimization problem: minx∈Rd f(x) = 1
N

∑N
i=1 fi(x)

Consider the SGD method that uses the iteration: xk+1 = xk − sk∇ikf(xk)

Theorem 15 (Convergence Rate for SGD)

Assume that f has L-Lipschitz continuous gradients and a non-empty solution set
X ∗, and it satisfies the PL condition, and f satisfies ‖∇fik(xk)‖ ≤ C2 for all xk
and some constant C > 0. Then, it holds that:

SGD with diminishing step-size sk = 2k+1
2µ(k+1)2 has a convergence rate of:

E[f(xk)− f∗] ≤ LC2

2µ2k
.

SGD with constant step-size sk = s ≤ 1
2µ has a convergence rate of:

E[f(xk)− f∗] ≤ (1− 2sµ)k[f(x0)− f∗] +
LC2s

4µ
.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 133 / 150

SGD under PL Condition in Over-parameterized Regime

Consider ERM in over-parameterized regime: minx∈Rd f(x) = 1
N

∑N
i=1 fi(x)

I f(x) is L-smooth: ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y
I fi(x) satisfies: ‖∇fi(x)−∇fi(y)‖ ≤ L̃|fi(x)− fi(y)| for some L̃ > 0
I In ML problems, w.l.o.g., we can assume that infx∈Rd f(x) = 0 and so the PL

condition can be modified as µ-PL∗: 2µf(x) ≤ ‖∇f(x)‖22

Over-parameterized regime: d� N
I The interpolation effect: for every sequence x1,x2, . . . such that

limk→∞ f(xk) = 0, we have

lim
k→∞

fi(xk) = 0, 1 ≤ i ≤ N.

I Meaning: In the over-parameterized regime, the richness of the model is so
high such that fit all training samples

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 134 / 150

SGD under PL Condition in Over-parameterized Regime

Consider the general mini-batched version of SGD with constant step-size s:

xk+1 = xk −
s

B

B∑
j=1

∇fijk(xk),

I B: the mini-batch size; the sample indices {i1k, . . . , iBk } in the mini-batch are
drawn uniformly with replacement in each iteration k from {1, . . . , N}

Theorem 16 ([Bassily et al., arXiv:1811.02564])

Consider the mini-batch SGD with smooth losses as stated. Suppose the
interpolation condition holds. Suppose that the ERM function f(x) is µ-PL∗ for
some µ > 0. For any mini-batch size B ∈ N, the mini-batch SGD with constant
step-size s∗(B) , 2µB

L(L̃+L(B−1))
guarantees that:

E[f(xk)] ≤ (1− µs∗(B))
k
f(x0)

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 135 / 150

Other Methods under the PL Condition

Similar linear convergence rate results can be shown for other methods under the
µ-PL, L-smoothness, and uniform variance bound conditions, which implies the
following sample complexity results:

GD [Polyak, ’63]: L
µ log ∆0

ε

SGD [Karimi et al., ECML-KDD’16]: L
µ (maxi Li

µ log(∆0

ε) + maxi Li∆∗
µε)

SVRG [Reddi et al., NeurIPS’16]: (N + N2/3 maxi Li
µ) log(∆0

ε)

SAGA [Reddi et al., NeurIPS’16]: (N + N2/3 maxi Li
µ) log(∆0

ε)

PAGE [Li et al., ICML’21]: (b+
√
b
Lavg

µ) log(∆0

ε), where b = min{σ2

µε , N}

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 136 / 150

Outline

The Polyak- Lojasiewicz (PL) Condition and Convergence of Various Methods
under the PL Condition

The PL Condition and the Over-parameterized Regime

Star-Convexity and α-Weak-Quasi-Convexity

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 137 / 150

PL Condition and Over-parameterized Regime

Landscape of under-parameterized and over-parameterized models (figure
from [Liu et al., arXiv:2003:00307]

Key Insight:
I Convexity is not the right framework for analyzing the loss landscape of

over-parameterized systems, even locally
I Instead, the µ-PL∗ condition (i.e., ‖∇f(w)‖22 ≥ 2µf(w), ∀w) is a more

appropriate framework

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 138 / 150

PL Condition and Over-parameterized Regime

The essence of supervised learning:

Given a dataset of size N , D = {xi, yi}Ni=1, xi ∈ Rd, y ∈ R

A parametric family of models f(w,x) (e.g., a neural network)

Goal: To find a model with parameter w∗ that fits the training data:

f(w∗,xi) ≈ yi, i = 1, 2, . . . , N

Mathematically: Equivalent to solving (exactly or approximately) a system of
N nonlinear equations:

F(w) = y,

where w ∈ Rd, y ∈ RN , and F(·) : Rd → RN with (F(w))i = f(w,xi).

The system of equations is solved by minimizing a certain loss function L(w)

I E.g., the square loss: L(w) = 1
2
‖F(w)− y‖2 = 1

2

∑N
i=1(f(w,xi)− yi)2

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 139 / 150

PL Condition and Over-parameterized Regime

µ-PL∗ condition emerges through the spectrum of the tangent kernel

Let DF(w) ∈ RN×d be the differential of the mapping F at w

The tangent kernel of F is defined as an N ×N matrix:

K(w) , DF(w)DF>(w)

I It follows from the definition that K(w) is PSD

The square loss L is µ-PL∗ at w [Liu, et al., arXiv:2003:00307], where

µ = λmin(K(w)),

is the smallest eigenvalue of the kernel matrix

Thus, the PL∗ condition is inherently tied to the spectrum of the tangent kernel
matrix associated with F

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 140 / 150

PL Condition and Over-parameterized Regime
Wide (hence over-parameterized) neural networks satisfy PL∗ condition:

A powerful tool: the neural tangent kernel (NTK)

I First appeared in a landmark paper [Jacot et al., NeurIPS’18]

I Tangent kernel of a single-layer wide neural networks with linear output layer
(f(x) =

∑d
i=1 σ(w>x)) are nearly constant in a ball B of a certain radius

around the ball with a random center (note: d is also the width of the NN):

‖HF (w)‖ = O∗(1/
√
d),

where HF (w) is a N × d× d tensor with (HF)ijk = ∂2Fi
∂wj∂wk

I Constancy of NTK implies training dynamic of wide NNs is approximately a
linear model ⇒ linear convergence of gradient flow (hence GD)

I It can be shown that [Liu, et al., arXiv:2003:00307]:

|λmin(K(w))− λmin(K(w0))| < O

(
sup
w∈B
‖HF (w)‖

)
= O(1/

√
d)

Thus, the PL∗ condition holds for single-layer wide NN

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 141 / 150

Outline

The Polyak- Lojasiewicz (PL) Condition and Convergence of Various Methods
under the PL Condition

The PL Condition and the Over-parameterized Regime

Star-Convexity and α-Weak-Quasi-Convexity

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 142 / 150

Star-Convex Function

Definition 17 ([Nesterov and Polyak, Math Prog’06])

A function f(x) is called star-convex if for some global minimizer x∗ and for all
λ ∈ [0, 1] and x ∈ Rd

f(λx + (1− λ)x∗) ≤ λf(x) + (1− λ)f(x∗)

Remarks

Any interval connecting some point x and some global minimizer x∗ lies not
lower than the graph

Considerably weaker than convexity

For example, |x|(1− e−|x|) is a nonconvex star-convex function.

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 143 / 150

An Example of Star-Convex Landscape

Intuitively, if we visualize the objective function as a landscape, star-convexity
means that the global optimum is “visible” from every point (i.e., “no
blocking ridges”, figure from [Lee and Valiant, FOCS’16])

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 144 / 150

Optimal First-Order Algorithms under Star-Convexity

AGMsDR [Nesterov et al., arXiv:1809.05895]

I Accelerated Gradient Method with Small-Dimensional Relaxation (AGMsDR)

I For star-convex L-smooth functions, AGMsDR achieves

min
k=dT/2e,...,T

‖∇f(yk)‖2∗ ≤
64L2∆0

T 3
,

f(xT)− f(x∗) ≤ 4L∆0

T 2

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 145 / 150

α-Weak-Quasi-Convex Function

A more general class of functions:

Definition 18

A function f(x) is called α-weakly-quasi-convex function if for some global
minimizer x∗, some some α ∈ (0, 1], and x ∈ Rd, f(x) satisfies

f(x)− f(x∗) ≤ 1

α
〈∇f(x),x− x∗〉

Remarks

Continuously differentiable 1-weakly-quasi-convex functions are exactly the
star-convex functions [Guminov et al., arXiv:1710.00797]

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 146 / 150

Optimal FO Methods under α-Weak-Quasi-Convexity

Iteration complexity:

AGMsDR [Nesterov et al., arXiv:1809.05895]: O(α−3/2L1/2∆0ε
−1/2)

I AGMsDR requires exact line search

SESOP [Guminov et al., arXiv:1710.00797]: O(α−1L1/2∆0ε
−1/2)

I SESOP requires exact line search

GAGD [Hinder et al., COLT’20]: O(α−1L1/2∆0ε
−1/2)

I GAGD only requires simple backtracking and binary line search

I Also provided iteration complexity lower bound, thus proving GAGD being
order-optimal in terms of iteration complexity

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 147 / 150

(α, µ)-Strongly Quasi-Convex Function

A more general class of functions:

Definition 19

A function f(x) is called (α, µ)-strongly-quasi-convex function if for some global
minimizer x∗, some some α ∈ (0, 1], µ > 0, and x ∈ Rd, f(x) satisfies

f(x)− f(x∗) ≤ 1

α
〈∇f(x),x− x∗〉 − µ

2
‖x− x∗‖2

Iteration complexity:

GAGD [Hinder et al., COLT’20]: O(α−1L1/2∆0 log(α−1ε−1))

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 148 / 150

Stochastic Methods under α-Weak-Quasi-Convexity

SGD [Gower et al., AISTATS’21]: finite-sum minimization:

I Sample complexity bound under “expected residual” assumption:
E[‖g(x)− g(x∗)− (∇f(x)−∇f(x∗))‖2] ≤ 2ρ(f(x)− f(x∗)) for some ρ > 0:

O

(
(ρ+ L)∆2

0

α2ε
+
σ2
∗∆

2
0

α2ε2

)
I Under interpolation condition and with Polyak step-size:

O

(
L̄∆2

0

α2ε

)
F L̄ is the expected smoothness constant
F In full batch case (i.e., g(x) = ∇f(x)), we have L̄ = L
F in importance sampling case (i.e., g(x) = ∇fj(x) where j = i with prob.

Li/
∑N
k=1 Lk), we have L̄ = 1

N

∑N
i=1 Li

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 149 / 150

Thank You!

JKL (ECE@OSU) OSU TDAI Deep Learning Summer School 150 / 150

	Introduction
	Convexity
	First-Order Methods
	Zeroth-Order Methods for Learning
	First-Order Optimization with Special Geometric Structure

