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Optimization of compositional functions

We consider the two-level stochastic compositional
optimization problem of the form

min
x∈X

F (x) , f (g(x))

f (u) , Eϕ[fϕ(u)] and g(x) , Eξ[gξ(x)]

where fϕ : Rd → R and gξ : Rn → Rd are differentiable
functions, and ϕ, ξ are independent random variables.



4/27

Application: policy evaluation for Markov decision process

Consider a Markov chain {Y0,Y1, · · · } ⊂ Y, unknown
transition operator P, reward function r : Y → R, discount
factor γ ∈ (0, 1)

We want to estimate the value function V : Y → R as
V (y) = E[

∑∞
t=0 γ

tr(Yt)|Y0 = y ]

For finite space Y, value function (in vector form) satisfies
Bellman equation V = r + γPV

As P is not known and |Y| large, system cannot be solved

Linear model for the value function Vx(y) ≈
∑d

i=1 xiφi (y)
[Sutton’09]

min
x∈Rd

dist((I − γE[P̂])Φx,E[̂r])
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Application: Model Agnostic Meta Learning (MAML)

The goal is to find a common initialization for a set of agents
M = {1, ...,M} from which they can adapt to a desired model

Adapting involves taking one (or several) gradient step(s)

One-step MAML

min
x∈Rd

F (x) ,
1

M

M∑
m=1

fm(x− α∇fm(x))

where fm(x) = Eξm [f (x; ξm)] [FinnAbbeelLevine’17]
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Challenge of stochastic compositional algorithms

Consider the main problem in an unconstrained setting

min
x∈Rn

F (x) , f (g(x)) = Eϕ[f (Eξ[g(x; ξ)];ϕ)]

Optimizing using SGD

xk+1 = xk − α∇g(xk ; ξk)>∇f (Eξ[g(xk ; ξ)];ϕk)

Obtaining unbiased stochastic gradient is costly. Note that

Eξ,ϕ[∇g(xk ; ξk)>∇f (g(xk ; ξ);ϕk)] 6= Eξ,ϕ[∇g(xk ; ξk)>∇f (Eξ[g(xk ; ξ)];ϕk)]

Is it possible to avoid the inner expectation?
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Approximate the inner expectation

WangFangLiu[MathProg’17] proposed to approximate the
inner expectation by a running average

uk+1 = (1− τk)uk + τkg(xk ; ξk) (1)

Motivated by gradient flow ODE, ChenSunYin[NeurIPS’20]
proposed an update to (1)

GhadimiRuszczynskiWang[SIOPT’20] also proposed a running
average over xk and the gradient of the composition beside (1)

The analysis of the three papers above (like many other
GD-type methods) heavily depends on the Lipschitz continuity
of the gradient
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Gradient descent

Upper bounding the objective function with an easy to solve
quadratic function and minimize it

First-order optimality condition (unconstrained case) to
minimize the UB under `2-norm results into the gradient step

∇f (xk) + L(x − xk) = 0 ⇒ x = xk − 1

L
∇f (xk)

Do we always have such an upper bound?
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Lipschitz continuity of the gradient (smoothness)

Existence of the UB requires Lipschitz continuity of the
gradient of the function

‖∇f (x)−∇f (y)‖∗ ≤ L‖x − y‖ ∀x , y ∈ domf

For C 2 functions, Lipschitz continuity of the gradient is
equivalent to

∇2f (x) � LI ∀x ∈ domf

i.e., max. eigenvalue of the hessian is bounded above by L.
Hence, the quadratic form 1

2(x − xk)∇2f (xk)(x − xk) is at

most L
2‖x − xk‖2 (descent lemma)

f (x) ≤ f (xk) +
〈
∇f (xk), x − xk

〉
+

L

2
‖x − xk‖22
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Absence of smoothness

Examples of nonsmooth functions

Obviously, nondifferentiable functions are not smooth
Any (multivariate) polynomial function of degree higher than
two (even convex)
f (x) = − log(x) + x2 with f ′′(x) = 1

x2 + 2 on R++

D-optimal design f (x) = − log det(HXH>) with X = diag(x)

No global convergence for gradient descent can be established
even in the convex setting

Even if the function is smooth on some level sets, L could be
huge, e.g., f (x) = − log(x) + x2 on {x : f (x) ≤ 10} has
L ≈ exp20, which results in very small step size

In nonconvex setting, gradient descent may diverge

BauschkeBolteTeboulle[MathOR’17] proposed a descent
lemma beyond Lipschitz gradient continuity



12/27

Relative smoothness
Let h be a differentiable convex function. The Bregman distance
between x , y under h is defined as

Dh(x , y) , h(x)− h(y)− 〈∇h(y), x − y〉 ∀x , y ∈ int domh

Definition (Relative smoothness)

The function f is smooth relative to h on X if for any x , x̄ ∈ X ,
the exists L s.t.

f (x) ≤ f (x̄) + 〈∇f (x̄), x − x̄〉+ LDh(x , x̄)

Proposition (LuFreundNesterov[SIOPT’17])

f is smooth relative to h on X iff

Lh(·)− f (·) is convex on X
If twice differentiable, ∇2f (x) � L∇2h(x) ∀x ∈ X

Note that smoothness is a special case of Relative smoothness with
h(x) = ‖x‖22/2
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Nonconvex setting?

Bolt et al. [SIOPT’18] extended the Bregman descent lemma

Definition

f is smooth and/or weakly-convex relative to h on X if there exists
L` > 0 and Lu > 0 s.t.

−L`Dh(x , x̄) ≤f (x)− f (x̄)− 〈∇f (x̄), x − x̄〉≤ LuDh(x , x̄)

The LHS inequality is equivalent to f + L`h is convex

Authors also showed global convergence of their Bregman
Proximal Gradient algorithm to first-order stationary point
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Contribution of this work

We developed stochastic optimization algorithms to solve the
constrained compositional problem with nonconvex
components in the absence of smoothness

This consists of three algorithms:

Smooth of Relatively smooth (SoR)
Relatively smooth of Relatively smooth (RoR)
Relatively smooth of Smooth (RoS)

We establish conditions for (relatively) smoothness of the
composition

Establish (sample) iteration complexity of the proposed
algorithms
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Smooth of Relatively smooth (SoR) composition

Lemma (Stationarity Measure)
Given a µh-strongly convex function h, define

x̂+ , argmin
y∈X

〈∇F (x), y − x〉 +
1

τ
Dh(y, x),

where τ > 0. Then x̂+ = x if and only if −∇F (x) ∈ NX (x).

The Lemma shows dist(x̂+, x) is a suitable measure for stationarity.

Assumption
i. The function fϕ is average Lf -smooth

ii. The function gξ is average Lg -smooth relative to 1-strongly convex function hg

iii. The stochastic gradients of fϕ and gξ are bounded in expectation

iv. The variance of gξ is bounded



16/27

SoR Algorithm

Require: x0, u0,w0, τk , βk
1: for k = 0, 1, 2, . . . ,K do

2: Solve

xk+1 = argmin
y∈X

〈
wk
, y − xk

〉
+

1

τk
Dh(y, x) (2)

with h(x) =
C2
g Lf
2
‖x‖2 + Cf Lg hg (x)

3: Take i.i.d. samples {ξkj }
n
j=1 and update

uk+1 =
1

n

n∑
j=1

[
(1− βk )(u

k + g
ξk
j
(xk+1)− g

ξk
j
(xk )) + βkgξk

j
(xk+1)

]
(3)

4: Take i.i.d. samples {ϕk
i }

n
i=1, {ξ

k
i }

n
i=1 and calculate

wk+1 =
1

n

n∑
i=1

∇g
ξk
i
(xk+1)ᵀ∇f

ϕk
i
(uk+1) (4)

5: end for



17/27

Convergence rate of the algorithm

Lemma

Under Assumption above, F (x) = f (g(x)) is 1-smooth relative to

C 2
g Lf -strongly convex function h(x) =

C 2
g Lf

2 ‖x‖
2 + Cf Lghg (x).

Corollary
Setting τk = τ < min{1/2, Lf /(Lf + 8), 1/Lf } and βk = Lf τ , we have

1

K

K−1∑
k=0

E
[
Dh(x̂

k+1, xk )

τ2

]
≤

V 0

ηK
+

σ2
F τ

C2
g Lf ηn

+
2L2f τ

2σ2
g

n
,

where η , τ − 2τ2.

Hence to achieve ε-stationarity, the algorithm needs K = O(ε−1)
and n = O(ε−1), i.e., the number of calls to the gξ , ∇gξ, and ∇fϕ
oracles are O(ε−2).
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Relatively smooth of Relatively smooth regime (RoS)

Assumption
i. The function fϕ is average Lf -smooth relative to hf

ii. The function gξ is average Lg -smooth.

iii. The stochastic gradients of fϕ, gξ are bounded in expectation

iv. The variance of gξ is bounded

Lemma

Under Assumption above, F (x) is 1-smooth relative to

h(x) =
Cf Lg+Chf

LgLf

2 ‖x‖2 + Lf hf (g(x)), which is shown to be
Cf Lg -strongly convex.
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Relatively smooth of Relatively smooth regime (RoR)

Assumption
i. The function fϕ is average Lf -smooth relative to hf

ii. The function gξ is average Lg -smooth relative to 1-strongly convex function hg

iii. The stochastic gradients of fϕ, gξ are bounded in expectation

iv. The variance of gξ is bounded

Lemma

Under Assumption above, F (x) is 1-smooth relative to
h(x) = (Cf Lg + Chf LgLf )hg (x) + Lf hf (g(x)), which is shown to be
convex. Furthermore, if hg (x) is 1-strongly convex, then h(x) is
Cf Lg -strongly convex.
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Algorithm RoS and RoR
Require: x0, τk ≤ 1, λ , Cf Lg + 2Chf

Lg Lf

1: for k = 0, 1, 2, . . . ,K do

2: Take i.i.d. samples {ξki }
nk
i=1

uk =
1

nk

nk∑
i=1

g
ξk
i
(xk ) (5)

3: Take i.i.d. samples {ϕk
i }

mk
i=1, {ξ

k
i }

mk
i=1 and calculate

vk =
1

mk

mk∑
i=1

∇g
ξk
i
(xk ), sk =

1

mk

mk∑
i=1

∇f
ϕk
i
(uk ) (6)

wk = vk sk (7)

4: Solve

xk+1 = argmin
y∈X

〈
wk
, y − xk

〉
+

Lf

τk
Dhf

(uk + (vk )ᵀ(y − xk ), uk ) +
λ

τk
Dhg (y, x

k )

with hg (x) = 1
2
‖x‖2 in the RoS case.

5: end for
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Stationarity measure (RoS and RoR)

Lemma
Define

x̃τ , argmin
y∈X

〈∇F (x), y − x〉+ Lf

τ
Dhf (g(x) +∇g(x)

ᵀ(y − x), g(x)) +
λ

τ
Dhg (y, x),

where λ , Cf Lg + 2Chf LgLf , then x̃τ = x if and only if −∇F (x) ∈ NX (x).

The above Lemma motivates the use of dist(x̃τ , x) to measure
stationarity error.

Assumption (Extra Assumption for RoS and RoR)

Similar to Bolt et al. [SIOPT’18], we also assume the function hf
is Lhf Lipschitz smooth on any bounded subset of Rd .
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Convergence rate for the RoR setting

Corollary
Setting τk = τ such that λ/τ − Cf − 1− Cf Lg > 0, nk = n, mk = m and define

A ,
(
λ
τ
− Cf − 1− Cf Lg

)
/

(
Cf Lg +

5Chf
Lg Lf
4

)
, then under the RoR and extra Assumptions, we have

1

K

K−1∑
k=0

E
[
‖x̃k+1 − xk‖2

τ2

]

≤
1

τ2A(Cf Lg +
Chf

Lg Lf
2

)

 f (g(x0))− F∗

K
+
σg
√
n
(2Cf + 4AChf

Lf ) +
2σ2

g

n

AC2
g L

2
f L

2
hf
τ2

Chf
Lg

+ C2
g L

2
f L

2
hf


+

1

m

(
C2
gCf + C2

gC
2
f

2
+

6AChf
C2
g Lf

Lg
+

2Aτ2σ2
F

Chf
Lg Lf

))
.

Hence to achieve ε-stationary solution, the algorithm needs
K = O(ε−1), n = O(ε−2), and m = O(ε−1), i.e., the number
of calls to the gξ , ∇gξ, and ∇fϕ oracles are O(ε−3), O(ε−2),
and O(ε−2), respectively.

For the RoS composition and through variance reduction,
we obtained O(ε−5/2), O(ε−3/2), O(ε−2) sample complexities
for the gξ , ∇gξ, and ∇fϕ oracles, respectively.
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Numerical experiments (SoR)
Risk-averse portfolio optimization

min
x∈X
−E[rξ(x)] + λ

(
E[(rξ(x))2]− E[rξ(x)]2

)
This problem is a stochastic compositional problem with

g(x) : Rn → R2 =
[
E[rξ(x)],E[(rξ(x))2]

]
f (u) : R2 → R = −u1 + λu2 − λu21

The random reward is modeled as rξ(x) := 1
2x

ᵀAξx with a
symmetric matrix Aξ

It can be shown that g is 1-smooth relative to

hg = ‖A‖
2 ‖x‖

2 +
3E[‖Aξ‖2]

4 ‖x‖4, while f is smooth (quadratic)

Also, f ◦ g is 1-smooth relative to

h(x) =
C 2
g Lf + Cf Lg‖A‖

2
‖x‖2 +

3Cf LgE[‖Aξ‖2]

4
‖x‖4
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Numerical experiments (RoS)

Policy evaluation for MDP with V π(i) ≈ 〈Φi , x〉 results in
minimization dist(r, (I− γPπ)Φx)

Under KL divergence DKL(a,b) =
∑

i ai log(ai/bi ) + bi − ai ,
∀ai , bi > 0, the problem can be written as

min
x

DKL

(
r, (I− γE[P])Φx

)
s.t. (I− γE[P])Φx ≥ ε1

To simplify the problem, given Aξ ∈ RS×n
+ , we solve

min
x∈Rn

+

DKL

(
r,E[Aξ])x

)
This problem is the stochastic compositional problem with

g(x) = E[Aξ]x, f (u) =
S∑

i=1

ui − ri log ui .

g is smooth and f is smooth relative to hf (u) = −
∑n

j=1 log uj
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SoR: Risk-averse optimization
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RoS: Policy evaluation for MDP
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Concluding remarks

This works looks into two-level stochastic compositional
optimization problem in the absence of smoothness

It considers the notion of “relative smoothness” for the inner,
outer, or both functions

The work proposes two Bregman-based algorithms to solve
SoR, RoR, and RoR compositions over closed convex sets

Iteration/oracle complexity of the proposed algorithms to
obtain first-order stationarity solutions are established

Thank you for listening


